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Introduction to Machine Learning

James Mclnerney
Adapted from slides by Nakul Verma



Announcements

 HW2 outsoon

* Next class we will go over everything so far in preparation for
exam 1



Supervised Learning

Data: (Z1,91), (Z2,92),... € X x Y Supervised learning

Assumption: thereis a (relatively simple) function /™ : & — YV
such that f*(Z:) = ¥ for mosti

Learning task: given n examples from the data, find an approximation f~f

Goal: f gives mostly correct prediction on unseen examples Testing Phase
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Unsupervised Learning

Unsupervised learning

Data: X1,To2,... € X

Assumption: thereis an underlyingstructurein X
Learning task: discover the structure given n examples from the data

Goal: come up with the summary of the data using the discovered structure

Partition the data into meaningful structures Cdustering

Find a low-dimensional representationthat . —
.. . . Dimensionality
retains important information, and suppresses ———

irrelevant/noise information

Let’s take a closer look using an example...




Example: Handwritten digits revisited

Handwritten digit data, but with no labels
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 Whatif we don’tknowthere are 10 groups?

* How can we discover/explore other

structurein such data? A 2D visualization of digits dataset



Handwritten digits visualization
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Grouping The Data, aka Clustering

Data: 1,72, ..
Given: known target number of groups k

Output: Partition 1, T2, ... Ty into k groups.

This is called the clustering problem,
also known as unsupervised classification, or quantization




Given: data ¥y, 7o, ... %, € R%, andintended number of groupings k

|dea:

find a set of representatives ¢1,C2,---Cx such that data is close to some
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Optimization:

n

minimizee, . ¢, [ “min || T; — 5}”2} Unfortunately this is NP-hard
o — J=1,. Even for d=2 and k=2
1= 1
How do we optimize this? How do we solve for

d=1 or k=1 case?



Algorithm to approximate k-means

Given: data 71, T2, ... %, € R?, andintended number of groupings k

Alternating optimization algorithm:

* Initialize cluster centers c1,¢2,...¢; (sayrandomly)

* Repeattill no more changesoccur
e Assign datato its closest center (this creates a partition) (assume centers are fixed)
* Find the optimal centers ¢, c, ... G, (assuming the data partition is fixed)

Demo:
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Some properties of this alternatingupdates algorithm:

 Theapproximationcan be arbitrarilybad,compared to the best cluster
assignment!

 Performance quality heavily dependenton the initialization!

k-means:

e How to select k?

-
t e S es is the right k=2 or k=3?
: * ° | ! Ya- tl
! I -~ . .
et R I J Solution: encode clustering
'
S’ ‘ N ®e '}I ’ for all values of k!

S Lt (hierarchical clustering)



Example: Clustering Without Committing to k
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0y Wombat kangaroo possum kaola
0 Elephant shrew
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Hierarchical Clustering

Two approaches:

Top Down (divisive):
e Partition datainto two groups (say, by k-means, with k=2)
* Recurseon each part

e Stop when cannot partition data anymore (ie single points left)

Bottom Up (agglomerative):

e Start by each data sampleas its own cluster (so initial number of clusters is n)
 Repeatedly merge “closest” pair of clusters

* Stop when only one cluster is left



Clustering via Probabilistic Mixture Modeling

Alternative way to cluster data:

Given: ¥y, %, ... %, € R? and numberof intended number of clusters k.
Assume a joint probability distribution (X, C) over the joint space R% x [k]

s 3
L%

C ~ Discrete distribution over the clusters P[C=i] = T;

Tk J

X|C =1~  Some multivariate distribution, e.g. N (ji;, >;)

Parameters: 0 = (7T1, [y 21y e oy They [k Ek) looks familiar?

Modeling assumption data (x,,¢;),..., (X,,,¢,) i.i.d.from R x [k]
BUT only get to see partialinformation: x,, x,, ..., X, (¢4, ..., ¢, hidden!)



Gaussian Mixture Modeling (GMM)

Given: Zy,Z9,...%, € R*andk.
Assume a joint probability distribution (X, C) over the joint spaceRd X k]

Ty
C ~ X|C — 7~ N ( i, Ei) Gaussian Mixture Model
T J 9:(wl,ﬁl,Zl,...,wk,ﬁk,Zk)
k
PlE[6] =)
i=1
’ (this is called a
Mixing weight Mixture component mixture model)

Example in R? x [3]: T tﬁw




GMM: Parameter Learning

0= (Wlaﬁlv 21y 77Tk:7/jk7 Ek)
So... how to learn the parameters 0?

MLE approach:
Givendata 71, 23, ... %, € R? i.i.d.

9 = Y
MLE 1= arg max ; In P|Z | 0]

1 L, o \Te_ 1/ o
NN exp{—g(w—uj) D (wuj)}]

ummm.... how what? Cannot really simplify further!



GMM: Maximum Likelihood

MLE for Mixture modeling (like GMMs) is NOT a convex optimization problem

In fact Maximum Likelihood Estimate for GMMs is degenerate!

X=R, k=2 (fittwo Gaussianin1d):

Which pair of Gaussians
gives higher likelihood?

X

as o — 0, MLE — !

Aside: why doesn’t this occur when fitting one Gaussian?




GMM: (local) Maximum Likelihood

So, can we make any progress?

Observation: even though a global MLE maximizeris notappropriate, several
local maximizersare desirable!

— -~ An example
non-maximized
likelihood

(do a few steps of gradient ascent)

Reaches a desirable
local maximum!

X

A better algorithm for finding good parameters: Expectation Maximization (EM)




Expectation Maximization (EM) Algorithm

Similar in spirit to the alternating update for k-meansalgorithm

Idea:
* Initializethe parametersarbitrarily

* Giventhe currentsetting of parameters find the best (soft) assignment of
data samplesto the clusters (Expectation-step)

 Update all the parameterswith respect to the current(soft) assignment
that maximizesthe likelihood (Maximization-step)

* Repeatuntil no more progressis made.



EM for GMM

Initialize 0 = (7T1,ﬁ1,21,---,7rk,ﬁk,2k) arbitrarily

Expectation-step: Foreach ¢ € {1,...,n} and J € {l,...,k} computethe
a55|gnmentw( Y of data x;to cIusterj

oo T \/det ) exp ( (7 — ;) 57 (7 - qj))
T j1=1 T \/det ) exp ( - %(a’:’— _’j/)Tz._,l(f— ﬁj/))

NO|—

Maximization-step: Maximize the log-likelihood of the parameters (with
respect to complete data)

I, 0 - L )
i=1 J =1

n ' Why?
2= — > wi (@ — @) (@ — ;)T



Complete Data Likelihood

Complete data (fully observed) data: data (x,,¢,),..., (x,,¢,,) i.i.d.

Then the complete data likelihood is:

L<9 | (fl,cl), covy (fn,cn))
n (i)

k
= P&, 1), (Fnea)l6) = [[ 1] (7 N i.50)
i=1j=1

W .— 31 Ifj=c
J 0 otherwise

Cluster indicator

So, MLE would easily be computed by taking the log and optimizing
over the parameters (getting the results for the M step)



EM for GMM in Action

Arbitrary 0
E O assignment




EM for GMM in Action

j*'
E step: soft
g O assignment of data
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EM for GMM in Action

M step: Maximize
parameter estimate



EM for GMM in Action
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EM for GMM in Action
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EM for GMM in Action

After twenty rounds




What We Learned...

* Unsupervised Learning problems:
Clusteringand Dimensionality Reduction

* K-means
e Hierarchical Clustering
e Gaussian Mixture Models

 EM algorithm



Questions?




