
COMS	4771
Introduction	to	Machine	Learning

James	McInerney
Adapted	from	slides	by	Nakul	Verma



Announcements

• HW2	out	soon

• Next	class	we	will	go	over	everything	so	far	in	preparation	for	
exam	1



Supervised	Learning

Data:			

Assumption:		there	is	a	(relatively	simple)	function
such	that																								for	most	i

Learning	task:		given	n examples	from	the	data,	find	an	approximation

Goal:						gives	mostly	correct	prediction	on	unseen	examples						

Labeled training data
(n examples from data) 

Learning
Algorithm

‘classifier’

Unlabeled test data
(unseen / future data) 

prediction

Supervised learning

Training	Phase

Testing	Phase



Unsupervised	Learning

Data:			

Assumption:		there	is	an	underlying	structure	in	

Learning	task:		discover	the	structure	given	n examples	from	the	data

Goal:		come	up	with	the	summary	of	the	data	using	the	discovered	structure

Unsupervised learning

Let’s take a closer look using an example…

Partition	the	data	into	meaningful	structures

Find	a	low-dimensional	representation	that	
retains	important	information,	and	suppresses	

irrelevant/noise	information

clustering

Dimensionality	
reduction



Example:	Handwritten	digits	revisited

Handwritten	digit	data,	but	with	no	labels

What	can	we	do?
• Suppose	know	that	there	are	10	groupings,	

can	we	find	the	groups?

• What	if	we	don’t	know	there	are	10	groups?

• How	can	we	discover/explore other	
structure	in	such	data? A	2D	visualization	of	digits	dataset	



Handwritten	digits	visualization



Grouping	The	Data,	aka	Clustering

Data:			

Given:	known	target	number	of	groups	k	

Output:	Partition																								into	k groups.	

This is called the clustering problem, 
also known as unsupervised classification, or quantization



k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Idea:	
find	a	set	of	representatives																								such	that	data	is	close	to some	
representative	

Optimization:	

How	do	we	optimize	this?

Unfortunately	this	is	NP-hard
Even	for	d=2	and	k=2

How	do	we	solve	for	
d=1	or	k=1	case?



Algorithm	to	approximate	k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Alternating	optimization	algorithm:	
• Initialize	cluster	centers																								(say	randomly)
• Repeat	till	no	more	changes	occur

• Assign	data	to	its	closest	center	(this	creates	a	partition) (assume	centers	are	fixed)

• Find	the	optimal	centers																							(assuming	 the	data	partition	is	fixed)

Demo:



Algorithm	to	approximate	k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Alternating	optimization	algorithm:	
• Initialize	cluster	centers																								(say	randomly)
• Repeat	till	no	more	changes	occur

• Assign	data	to	its	closest	center	(this	creates	a	partition) (assume	centers	are	fixed)

• Find	the	optimal	centers																							(assuming	 the	data	partition	is	fixed)

Demo:



Algorithm	to	approximate	k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Alternating	optimization	algorithm:	
• Initialize	cluster	centers																								(say	randomly)
• Repeat	till	no	more	changes	occur

• Assign	data	to	its	closest	center	(this	creates	a	partition) (assume	centers	are	fixed)

• Find	the	optimal	centers																							(assuming	 the	data	partition	is	fixed)

Demo:



Algorithm	to	approximate	k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Alternating	optimization	algorithm:	
• Initialize	cluster	centers																								(say	randomly)
• Repeat	till	no	more	changes	occur

• Assign	data	to	its	closest	center	(this	creates	a	partition) (assume	centers	are	fixed)

• Find	the	optimal	centers																							(assuming	 the	data	partition	is	fixed)

Demo:



Algorithm	to	approximate	k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Alternating	optimization	algorithm:	
• Initialize	cluster	centers																								(say	randomly)
• Repeat	till	no	more	changes	occur

• Assign	data	to	its	closest	center	(this	creates	a	partition) (assume	centers	are	fixed)

• Find	the	optimal	centers																							(assuming	 the	data	partition	is	fixed)

Demo:



Algorithm	to	approximate	k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Alternating	optimization	algorithm:	
• Initialize	cluster	centers																								(say	randomly)
• Repeat	till	no	more	changes	occur

• Assign	data	to	its	closest	center	(this	creates	a	partition) (assume	centers	are	fixed)

• Find	the	optimal	centers																							(assuming	 the	data	partition	is	fixed)

Demo:



Algorithm	to	approximate	k-means

Given:		data																																	,	and	intended	number	of	groupings	k

Alternating	optimization	algorithm:	
• Initialize	cluster	centers																								(say	randomly)
• Repeat	till	no	more	changes	occur

• Assign	data	to	its	closest	center	(this	creates	a	partition) (assume	centers	are	fixed)

• Find	the	optimal	centers																							(assuming	 the	data	partition	is	fixed)

Demo:



k-means

Some	properties	of	this	alternating	updates	algorithm:

• The	approximation	can	be	arbitrarily	bad,	compared	to	the	best	cluster	
assignment!

• Performance	quality	heavily	dependent	on	the	initialization!

k-means:
• How	to	select	k?

is	the	right	k=2	or	k=3?

Solution:	 encode	clustering
for	all	values	of	k!

(hierarchical	 clustering)



Example:	Clustering	Without	Committing	to	k

K=3	
(coarser	resolution)

k=6	
(finer	resolution)



Hierarchical	Clustering

Two	approaches:

Top	Down	(divisive):	
• Partition	data	into	two	groups	(say,	by	k-means,	with	k=2)
• Recurseon	each	part
• Stop	when	cannot	partition	data	anymore	(ie single	points	left)

Bottom	Up	(agglomerative):
• Start	by	each	data	sample	as	its	own	cluster	(so	initial	number	of	clusters	is	n)

• Repeatedly	merge	“closest”	pair	of	clusters	
• Stop	when	only	one	cluster	is	left



Clustering	via	Probabilistic	Mixture	Modeling

Alternative	way	to	cluster	data:

Given:																																			and	number	of	intended	number	of	clusters	k.
Assume	a	joint	probability	distribution															over	the	joint	space

Parameters:	

Modeling	assumption	data	(x1,c1),…,	(xn,cn)	i.i.d.	from																			
BUT	only	get	to	see	partial	information:	x1,x2,…, xn (c1,	…,	cn hidden!)		

p1

pk

Discrete	distribution	over	the	clusters		P[C=i]	=	pi

Some	multivariate	distribution,	 e.g.	

looks	familiar?



Gaussian	Mixture	Modeling	(GMM)
Given:																																				and	k.
Assume	a	joint	probability	distribution															over	the	joint	space

p1

pk

Gaussian	Mixture	Model

Mixing	weight Mixture	component
(this	is	called	a	
mixture	model)

Example	in	R2 x	[3]:



GMM:	Parameter	Learning

So…	how	to	learn	the	parameters	q ?

MLE	approach:	
Given	data																																							i.i.d.

ummm….	now	what? Cannot	really	simplify	 further!



GMM:	Maximum	Likelihood
MLE	for	Mixture	modeling	(like	GMMs)	is	NOT	a	convex	optimization	problem

In	fact	Maximum Likelihood	Estimate	for	GMMs	is	degenerate!

X X

X	=	R,		k	=	2		(fit	two	Gaussian	in	1d):

Which	pair	of	Gaussians	
gives	higher	likelihood?

as	s® 0,	MLE	®¥!

Aside:	why	doesn’t	this	occur	when	fitting	one	Gaussian?



GMM:	(local)	Maximum	Likelihood

So,	can	we	make	any	progress?

Observation:	even	though	a	global	MLE	maximizer	is	not	appropriate,	several	
local	maximizers	are	desirable!

X

An	example	
non-maximized	

likelihood

X

Reaches	a	desirable	
local	maximum!

(do	a	few	steps	of	gradient	ascent)

A	better	algorithm	for	finding	good	parameters:	Expectation	Maximization	 (EM)



Expectation	Maximization	(EM)	Algorithm

Similar	in	spirit	to	the	alternating	update	for	k-means	algorithm

Idea:
• Initialize	the	parameters	arbitrarily	
• Given	the	current	setting	of	parameters	find	the	best	(soft)	assignment	of	

data	samples	to	the	clusters	(Expectation-step)
• Update	all	the	parameters	with	respect	to	the	current	(soft)	assignment	

that	maximizes	the	likelihood	(Maximization-step)
• Repeat	until	no	more	progress	is	made.



EM	for	GMM

Initialize																																																										arbitrarily	

Expectation-step:	For	each																											and																												compute	the	
assignment									of	data	xi to	cluster	j

Maximization-step:	Maximize	the	log-likelihood	of	the	parameters	(with	
respect	to	complete	data)

Why?



Complete	Data	Likelihood

Complete	data	(fully	observed)	data:	data	(x1,c1),…,	(xn,cn)	i.i.d.	

Then	the	complete data	likelihood	is:

1 If	j	=	ci
0				otherwise		

Cluster	indicator

So,	MLE	would	easily	be	computed	by	taking	the	log	and	optimizing	
over	the	parameters	(getting	the	results	 for	the	M	step)



EM	for	GMM	in	Action

Arbitrary	q
assignment



EM	for	GMM	in	Action

E	step:	soft	
assignment	of	data



EM	for	GMM	in	Action

M	step:	Maximize	
parameter	estimate



EM	for	GMM	in	Action

After	two	rounds



EM	for	GMM	in	Action

After	five	rounds



EM	for	GMM	in	Action

After	twenty	rounds



What	We	Learned…

• Unsupervised	Learning	problems:	
Clustering	and	Dimensionality	Reduction

• K-means

• Hierarchical	Clustering

• Gaussian	Mixture	Models

• EM	algorithm



Questions?


