Gradient Descent

Wed Sept 20th, 2017
James Mclnenrey

Adapted from slides by Francisco J. R. Ruiz



Housekeeping
A tew clarifications of and adjustments to the course schedule:

* No more breaks at the midpoint of the lecture.

* The lecture will run to 3:55pm. We encourage as many questions as you can
muster at the end. If there are no more questions then I will expand on the
day’s topic until 3:55pm.

* We start at 2:40pm. Schedule glitches are resolved and will not happen again.

» Sometimes I ask TAs go through homework at the start of the lecture. They
know what you got wrong most often and it helps to get to know each other.



Introduction

» In the coming weeks, we will explore parametric methods
for the following tasks.

Regression Classification Clustering



Introduction

» In the coming weeks, we will explore parametric methods
for the following tasks.

» All can be addressed using maximum likelihood estimation,
which 1s, at heart, an optimization problem.

Regression Classification Clustering



Optimization

» Optimization appears in many machine learning algorithms

» Supervised and unsupervised learning

« Basic and advanced methods



Optimization

» Optimigation: Minimize an objective function

X" = m}in f(x)

- Example: Naive Bayes classification

» The function is the sum of squared errors of each class data point and
feature dimension. Can anybody explain why?

« Find the means and variances that minimize the function.



Optimization

» The function can have one, multiple or no local optima

~ fa(x)

f1(z)




Optimization

» In some cases, we can find the optima analytically

» Examples: natve Bayes classification, linear regression

» In most practical cases, we need an iterative algorithm

» Examples: logistic regression, neural networks



Gradient Descent

» Gradient descent is an algorithm for optimization
» Simple to implement
» Intuitive interpretation
» Works also 1n high dimensions



Gradient
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Gradient
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The gradient gives
the direction of
steepest ascent



Gradient Descent: Algorithm

- Algorithm:
1. Set x to 1nit1al guess
2. Refine the current value of x

3. If not converged, go back to step 2

» In step 2, follow the negative gradient



Gradient Descent: Algorithm
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Gradient Descent: Algorithm

» Hach update is:
new __ __old old ST
X =x""+p-Vxf (X ) (Maximization)

S hew Xold — - V« f (XOId) (Minimization)



Gradient Descent: Algorithm

» Hach update is:
new __ __old old ST
X =x""+p-Vxf (X ) (Maximization)

S hew Xold — - V« f (XOld) (Minimization)

Current value of x \

. Gradient
Step size




Convergence

» We stop the algorithm:
» When x does not change much
» When the gradient is small
- After a fixed number of iterations



Limitations

» Not guaranteed to find the global optimum

» Choosing the step size is a nuisance

» Only takes into account gradient information

» Fach iteration requires an entire pass through the data set
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Limitations

» Not guaranteed to find the global optimum
Do multiple random restarts and pick best run [higher

dimensions make this less effective]
» Choosing the step size is a nuisance
RMSprop, AdaGrad, Adam [have their own hyperparameters]

» Only takes into account gradient information
Newton’s method [requires second derivative]

» Fach iteration requires an entire pass through the data set
Stochastic gradient descent...



Gradient descent

» We minimize the loss with respect to parameters

« Gradient descent

N

» 'Too expensive: N can be large

» Farly iterations: does a full pass over the data based on “bad”

initial parameters



Inference: SGD

» Stochastic gradient ascent

DATA
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Inference: SGD

» Stochastic gradient ascent

“NEW DATA”

DATA

V4




Inference: SGD

» Stochastic gradient ascent

» Subsample a minibatch of data

“NEW DATA”

» Pretend that you dataset

DATA

consists of this minibatch

V4




Inference: SGD

» Stochastic gradient ascent

» At each iteration of gradient

“NEW DATA”

descent, subsample a new minibatch

DATA

» Bventually, we end up using the

entire dataset

V4




Inference: SGD

» Why does this work? (Analogy). Helps avoid local optima.
B
] 1
Vo f (@)~ = ) Vi)
1=1

» Need learning rate to have the following properties:

Zpt%ocv Zp%<00
t t

+ [Robbins & Monro, 1951]  py = (po +1) ™"



Issues in SGD

» Tradeoffs in learning rate:
» too low, convergence may take a very long time
» too high, may not converge at all

» Stopping criteria: use validation data

» Convexity vs. non-convexity



Automatic Differentiation

* Modern ML systems are often implemented in libraries that allow you to
automatically find gradients of ““arbitrary” models.
» Advantages:
- modular approach to learning rates, model components, error functions
» reduce bugs, no manual derivation
» software encapsulation of models (i.e. easter model comparison)
- Limitations:
» handling “arbitrary” models 1s the goal not the current state (e.g., how are

time series handled?



Computational Graph

» The computational graph defines:
A. Data

B. Variables
C. Computations (network architecture, loss)
D. Optimizer

E. Other tasks (e.g., predictions on test)



Computational Graph

» The computational graph

o0

» does not compute anythin

» does not hold any values

» just specifies the model

and variables



Sessions

» A session allows you to
» execute graph (or part of the graph)
» allocate memory to hold variables

» do computations



Computational Graph & Sessions

import tensorflow as tf
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graph name = tf.Graph()
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aux variable = tf.Variable( tf.constant(42.0) )



Computational Graph & Sessions

import tensorflow as tf

# Declare a graph

graph name = tf.Graph()

with graph name.as default():
# Declare inputs, variables, computations, ...
aux variable = tf.Variable( tf.constant(42.0) )

with tf.Session(graph=graph name) as session name:
# Initialize the variable
tf.initialize all variables().run()
# Print its value
print(aux variable.eval())



Placeholders

» A placeholder

» declares a variable with no specified value

» “promises’ to specity the value later



Placeholders

import tensorflow as tf



Placeholders

import tensorflow as tf

# Declare a graph
graph name = tf.Graph()
with graph name.as default():
# Declare a placeholder
aux varl = tf.placeholder(tf.float32)
# Define another variable
aux var2 = aux varl + 1.0



Placeholders

import tensorflow as tf

# Declare a graph
graph name = tf.Graph()
with graph name.as default():
# Declare a placeholder
aux varl = tf.placeholder(tf.float32)
# Define another variable
aux var2 = aux varl + 1.0

with tf.Session(graph=graph name) as session name:
# Create a feeder
feed dict = {aux varl: 3.0}
# Print the second variable
print( aux var2.eval(feed dict=feed dict) )



Summary

- Gradient descent does maximum likelthood estimation
* Step sizes

» Stochastic gradient descent



