Gradient Descent

Wed Sept 20th, 2017
James Mclnenrey

Adapted from slides by Francisco J. R. Ruiz

Housekeeping
A tew clarifications of and adjustments to the course schedule:

* No more breaks at the midpoint of the lecture.

* The lecture will run to 3:55pm. We encourage as many questions as you can
muster at the end. If there are no more questions then I will expand on the
day’s topic until 3:55pm.

* We start at 2:40pm. Schedule glitches are resolved and will not happen again.

» Sometimes I ask TAs go through homework at the start of the lecture. They
know what you got wrong most often and it helps to get to know each other.

Introduction

» In the coming weeks, we will explore parametric methods
for the following tasks.

Regression Classification Clustering

Introduction

» In the coming weeks, we will explore parametric methods
for the following tasks.

» All can be addressed using maximum likelihood estimation,
which 1s, at heart, an optimization problem.

Regression Classification Clustering

Optimization

» Optimization appears in many machine learning algorithms

» Supervised and unsupervised learning

« Basic and advanced methods

Optimization

» Optimigation: Minimize an objective function

X" = m}in f(x)

- Example: Naive Bayes classification

» The function is the sum of squared errors of each class data point and
feature dimension. Can anybody explain why?

« Find the means and variances that minimize the function.

Optimization

» The function can have one, multiple or no local optima

~ fa(x)

f1(z)

Optimization

» In some cases, we can find the optima analytically

» Examples: natve Bayes classification, linear regression

» In most practical cases, we need an iterative algorithm

» Examples: logistic regression, neural networks

Gradient Descent

» Gradient descent is an algorithm for optimization
» Simple to implement
» Intuitive interpretation
» Works also 1n high dimensions

Gradient

Gradient

NVt
NNV
I~ /q\ \\\\\\«
TA///»\\\\\\\\\

-I\A|\A|AII+\\\\\\\\\«

. « ¢ AT T T A A 4

Quiver Plot

o - T TTAAT A A A A A 4 4

« T A
I N N R R R P
\\\\\\ by \\\\\\\\\\\\&
x\\\\ / \\\\\\x
e
|‘\\\\\\\\\ 4/4// \\ s
“»‘\\\\\L\A// P
N\ 1/ S

AR S I S 2P

b b b K A e

C A & e wma— — — \ \ // ——

A e~ ~ \ / ///r/r/r

! LTy AR

H;\\\»\»\ \\ & ///,/////

s/ LNNNNYY

S N AR RN R
...._...‘_‘\\\\\««k///_x;;

Gradient

T T T T m
///d%\\\\\\\
~ X\ \\\\\\«

[~ \\\\\\
f— \\\\\
-|\ \ \\\\\\« I
> el T A A 4 4 i .
L o A7 A A A A 4 4 4
AV A N B N I I VR
v I'4
\\\ \\\\\\\\\\\\ -
\\\\ \\»»\\\\\\\\
._nlu_\\ \ \\\\\\
ol S Vo
NN “lg
RV gl
u“\\\\\\\\L\ P
o, Nt/ .
r b b b s s—a— ~ %\ 4 = o
s A A & & . " IVI'I-I_—
4 A & & e \\// S~
S //r/r/r
;;AL\L\\\ / ///2
s ey N //»//u_
‘s\\\\\\ ////)/’
A VNN
| _»_\\&«_k///_x;» "
m N — o — AN

The gradient gives
the direction of
steepest ascent

Gradient Descent: Algorithm

- Algorithm:
1. Set x to 1nit1al guess
2. Refine the current value of x

3. If not converged, go back to step 2

» In step 2, follow the negative gradient

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

» Hach update is:
new __ __old old ST
X =x""+p-Vxf (X) (Maximization)

S hew Xold — - V« f (XOId) (Minimization)

Gradient Descent: Algorithm

» Hach update is:
new __ __old old ST
X =x""+p-Vxf (X) (Maximization)

S hew Xold — - V« f (XOld) (Minimization)

Current value of x \

. Gradient
Step size

Convergence

» We stop the algorithm:
» When x does not change much
» When the gradient is small
- After a fixed number of iterations

Limitations

» Not guaranteed to find the global optimum

» Choosing the step size is a nuisance

» Only takes into account gradient information

» Fach iteration requires an entire pass through the data set

Limitations

» Not guaranteed to find the global optimum
Do multiple random restarts and pick best run [higher

dimensions make this less effective]
» Choosing the step size is a nuisance

» Only takes into account gradient information

» Fach iteration requires an entire pass through the data set

Limitations

» Not guaranteed to find the global optimum
Do multiple random restarts and pick best run [higher

dimensions make this less effective]
» Choosing the step size is a nuisance
RMSprop, AdaGrad, Adam [have their own hyperparameters]

» Only takes into account gradient information

» Fach iteration requires an entire pass through the data set

Limitations

» Not guaranteed to find the global optimum
Do multiple random restarts and pick best run [higher

dimensions make this less effective]
» Choosing the step size is a nuisance
RMSprop, AdaGrad, Adam [have their own hyperparameters]

» Only takes into account gradient information
Newton’s method [requires second derivative]

» Fach iteration requires an entire pass through the data set

Limitations

» Not guaranteed to find the global optimum
Do multiple random restarts and pick best run [higher

dimensions make this less effective]
» Choosing the step size is a nuisance
RMSprop, AdaGrad, Adam [have their own hyperparameters]

» Only takes into account gradient information
Newton’s method [requires second derivative]

» Fach iteration requires an entire pass through the data set
Stochastic gradient descent...

Gradient descent

» We minimize the loss with respect to parameters

« Gradient descent

N

» 'Too expensive: N can be large

» Farly iterations: does a full pass over the data based on “bad”

initial parameters

Inference: SGD

» Stochastic gradient ascent

DATA

Inference: SGD

» Stochastic gradient ascent

DATA

Inference: SGD

» Stochastic gradient ascent

“NEW DATA”

DATA

V4

Inference: SGD

» Stochastic gradient ascent

» Subsample a minibatch of data

“NEW DATA”

» Pretend that you dataset

DATA

consists of this minibatch

V4

Inference: SGD

» Stochastic gradient ascent

» At each iteration of gradient

“NEW DATA”

descent, subsample a new minibatch

DATA

» Bventually, we end up using the

entire dataset

V4

Inference: SGD

» Why does this work? (Analogy). Helps avoid local optima.
B
] 1
Vo f (@)~ =) Vi)
1=1

» Need learning rate to have the following properties:

Zpt%ocv Zp%<00
t t

+ [Robbins & Monro, 1951] py = (po +1) ™"

Issues in SGD

» Tradeoffs in learning rate:
» too low, convergence may take a very long time
» too high, may not converge at all

» Stopping criteria: use validation data

» Convexity vs. non-convexity

Automatic Differentiation

* Modern ML systems are often implemented in libraries that allow you to
automatically find gradients of ““arbitrary” models.
» Advantages:
- modular approach to learning rates, model components, error functions
» reduce bugs, no manual derivation
» software encapsulation of models (i.e. easter model comparison)
- Limitations:
» handling “arbitrary” models 1s the goal not the current state (e.g., how are

time series handled?

Computational Graph

» The computational graph defines:
A. Data

B. Variables
C. Computations (network architecture, loss)
D. Optimizer

E. Other tasks (e.g., predictions on test)

Computational Graph

» The computational graph

o0

» does not compute anythin

» does not hold any values

» just specifies the model

and variables

Sessions

» A session allows you to
» execute graph (or part of the graph)
» allocate memory to hold variables

» do computations

Computational Graph & Sessions

import tensorflow as tf

Computational Graph & Sessions

import tensorflow as tf

Declare a graph

graph name = tf.Graph()

with graph name.as default():
Declare inputs, variables, computations, ...
aux variable = tf.Variable(tf.constant(42.0))

Computational Graph & Sessions

import tensorflow as tf

Declare a graph

graph name = tf.Graph()

with graph name.as default():
Declare inputs, variables, computations, ...
aux variable = tf.Variable(tf.constant(42.0))

with tf.Session(graph=graph name) as session name:
Initialize the variable
tf.initialize all variables().run()
Print its value
print(aux variable.eval())

Placeholders

» A placeholder

» declares a variable with no specified value

» “promises’ to specity the value later

Placeholders

import tensorflow as tf

Placeholders

import tensorflow as tf

Declare a graph
graph name = tf.Graph()
with graph name.as default():
Declare a placeholder
aux varl = tf.placeholder(tf.float32)
Define another variable
aux var2 = aux varl + 1.0

Placeholders

import tensorflow as tf

Declare a graph
graph name = tf.Graph()
with graph name.as default():
Declare a placeholder
aux varl = tf.placeholder(tf.float32)
Define another variable
aux var2 = aux varl + 1.0

with tf.Session(graph=graph name) as session name:
Create a feeder
feed dict = {aux varl: 3.0}
Print the second variable
print(aux var2.eval(feed dict=feed dict))

Summary

- Gradient descent does maximum likelthood estimation
* Step sizes

» Stochastic gradient descent

