
Gradient Descent
James McInenrey

Adapted from slides by Francisco J. R. Ruiz

Wed Sept 20th, 2017

• No more breaks at the midpoint of the lecture.

• The lecture will run to 3:55pm. We encourage as many questions as you can
muster at the end. If there are no more questions then I will expand on the
day’s topic until 3:55pm.

• We start at 2:40pm. Schedule glitches are resolved and will not happen again.

• Sometimes I ask TAs go through homework at the start of the lecture. They
know what you got wrong most often and it helps to get to know each other.

Housekeeping
A few clarifications of and adjustments to the course schedule:

• In the coming weeks, we will explore parametric methods
for the following tasks.

Introduction

Regression Classification Clustering

• In the coming weeks, we will explore parametric methods
for the following tasks.
• All can be addressed using maximum likelihood estimation,
which is, at heart, an optimization problem.

Introduction

Regression Classification Clustering

Optimization in ML

• Optimization appears in many machine learning algorithms
• Supervised and unsupervised learning

• Basic and advanced methods

Optimization in ML

• Optimization: Minimize an objective function

• Example: Naive Bayes classification
• The function is the sum of squared errors of each class data point and

feature dimension. Can anybody explain why?
• Find the means and variances that minimize the function.

x

? = min
x

f(x)

Optimization in ML

• The function can have one, multiple or no local optima

x

f(x
)

f1(x)

f2(x)

f3(x)

Optimization in ML

• In some cases, we can find the optima analytically
• Examples: naive Bayes classification, linear regression

• In most practical cases, we need an iterative algorithm
• Examples: logistic regression, neural networks

Gradient Descent

• Gradient descent is an algorithm for optimization
• Simple to implement
• Intuitive interpretation
• Works also in high dimensions

Gradient

Gradient

Gradient

The gradient gives
the direction of
steepest ascent

Gradient Descent: Algorithm

• Algorithm:
1. Set x to initial guess
2. Refine the current value of x
3. If not converged, go back to step 2

• In step 2, follow the negative gradient

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

Gradient Descent: Algorithm

• Each update is:

x

new = x

old � ⇢ ·r
x

f(xold)

x

new = x

old + ⇢ ·r
x

f(xold) (Maximization)

(Minimization)

Gradient Descent: Algorithm

• Each update is:

x

new = x

old � ⇢ ·r
x

f(xold)

x

new = x

old + ⇢ ·r
x

f(xold) (Maximization)

(Minimization)

Current value of x
Step size

Gradient

Convergence

• We stop the algorithm:
• When x does not change much
• When the gradient is small
• After a fixed number of iterations

Limitations
• Not guaranteed to find the global optimum

• Choosing the step size is a nuisance

• Only takes into account gradient information

• Each iteration requires an entire pass through the data set

Limitations
• Not guaranteed to find the global optimum

• Choosing the step size is a nuisance

• Only takes into account gradient information

• Each iteration requires an entire pass through the data set

Do multiple random restarts and pick best run [higher
dimensions make this less effective]

Limitations
• Not guaranteed to find the global optimum

• Choosing the step size is a nuisance

• Only takes into account gradient information

• Each iteration requires an entire pass through the data set

Do multiple random restarts and pick best run [higher
dimensions make this less effective]

RMSprop, AdaGrad, Adam [have their own hyperparameters]

Limitations
• Not guaranteed to find the global optimum

• Choosing the step size is a nuisance

• Only takes into account gradient information

• Each iteration requires an entire pass through the data set

Do multiple random restarts and pick best run [higher
dimensions make this less effective]

RMSprop, AdaGrad, Adam [have their own hyperparameters]

Newton’s method [requires second derivative]

Limitations
• Not guaranteed to find the global optimum

• Choosing the step size is a nuisance

• Only takes into account gradient information

• Each iteration requires an entire pass through the data set

Do multiple random restarts and pick best run [higher
dimensions make this less effective]

RMSprop, AdaGrad, Adam [have their own hyperparameters]

Newton’s method [requires second derivative]

Stochastic gradient descent…

Gradient descent

• We minimize the loss with respect to parameters

• Gradient descent

• Too expensive: N can be large

• Early iterations: does a full pass over the data based on “bad”
initial parameters

r
x

L =
NX

i

r
x

f

i

(x)

Inference: SGD
• Stochastic gradient ascent

DATA

Inference: SGD
• Stochastic gradient ascent

DATA

Inference: SGD
• Stochastic gradient ascent

DATA
“NEW DATA”

Inference: SGD
• Stochastic gradient ascent

DATA
“NEW DATA”

• Subsample a minibatch of data

• Pretend that you dataset
consists of this minibatch

Inference: SGD
• Stochastic gradient ascent

DATA
“NEW DATA”

• At each iteration of gradient
descent, subsample a new minibatch

• Eventually, we end up using the
entire dataset

Inference: SGD
• Why does this work? (Analogy). Helps avoid local optima.

• Need learning rate to have the following properties:

• [Robbins & Monro, 1951]

E[r
x

f(x)] ⇡ 1

B

BX

i=1

rf

i

(x)

X

t

⇢t ! 1,
X

t

⇢2t < 1

⇢t = (⇢0 + t)�

Issues in SGD
• Tradeoffs in learning rate:

• too low, convergence may take a very long time

• too high, may not converge at all

• Stopping criteria: use validation data

• Convexity vs. non-convexity

Automatic Differentiation
• Modern ML systems are often implemented in libraries that allow you to

automatically find gradients of “arbitrary” models.
• Advantages:

• modular approach to learning rates, model components, error functions
• reduce bugs, no manual derivation
• software encapsulation of models (i.e. easier model comparison)

• Limitations:
• handling “arbitrary” models is the goal not the current state (e.g., how are

time series handled?

Computational Graph

• The computational graph defines:

A. Data

B. Variables

C. Computations (network architecture, loss)

D. Optimizer

E. Other tasks (e.g., predictions on test)

Computational Graph

• The computational graph

• does not compute anything

• does not hold any values

• just specifies the model
and variables

xn1 xn2 xnD. . .

. . .

xn3

. . .

z(1)n1 z(1)n2 z(1)n3 z(1)n4
z(1)nK1

z(2)n1 z(2)n2 z(2)n3 z(2)nK2

yn0 yn9yn1 . . .

Sessions

• A session allows you to

• execute graph (or part of the graph)

• allocate memory to hold variables

• do computations

Computational Graph & Sessions

Computational Graph & Sessions

Computational Graph & Sessions

Placeholders

• A placeholder
• declares a variable with no specified value
• “promises” to specify the value later

Placeholders

Placeholders

Placeholders

Summary

• Gradient descent does maximum likelihood estimation

• Step sizes

• Stochastic gradient descent

