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• No more breaks at the midpoint of  the lecture. 

• The lecture will run to 3:55pm. We encourage as many questions as you can 
muster at the end. If  there are no more questions then I will expand on the 
day’s topic until 3:55pm. 

• We start at 2:40pm. Schedule glitches are resolved and will not happen again. 

• Sometimes I ask TAs go through homework at the start of  the lecture. They 
know what you got wrong most often and it helps to get to know each other.

Housekeeping
A few clarifications of  and adjustments to the course schedule:



• In the coming weeks, we will explore parametric methods 
for the following tasks.

Introduction
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• In the coming weeks, we will explore parametric methods 
for the following tasks. 
• All can be addressed using maximum likelihood estimation, 
which is, at heart, an optimization problem.                         

Introduction

Regression Classification Clustering



Optimization in ML

• Optimization appears in many machine learning algorithms 
• Supervised and unsupervised learning 

• Basic and advanced methods



Optimization in ML

• Optimization: Minimize an objective function 

• Example: Naive Bayes classification 
• The function is the sum of  squared errors of  each class data point and 

feature dimension. Can anybody explain why? 
• Find the means and variances that minimize the function.
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Optimization in ML

• The function can have one, multiple or no local optima

x

f(x
)

f1(x)

f2(x)

f3(x)



Optimization in ML

• In some cases, we can find the optima analytically 
• Examples: naive Bayes classification, linear regression 

• In most practical cases, we need an iterative algorithm 
• Examples: logistic regression, neural networks



Gradient Descent

• Gradient descent is an algorithm for optimization 
• Simple to implement 
• Intuitive interpretation 
• Works also in high dimensions



Gradient



Gradient



Gradient

The gradient gives 
the direction of  
steepest ascent



Gradient Descent: Algorithm

• Algorithm: 
1. Set x to initial guess 
2. Refine the current value of  x 
3. If  not converged, go back to step 2 

• In step 2, follow the negative gradient
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Gradient Descent: Algorithm

• Each update is:
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Gradient Descent: Algorithm

• Each update is:

x

new = x

old � ⇢ ·r
x

f(xold)

x

new = x

old + ⇢ ·r
x

f(xold) (Maximization)

(Minimization)

Current value of  x
Step size

Gradient



Convergence

• We stop the algorithm: 
• When x does not change much 
• When the gradient is small 
• After a fixed number of  iterations



Limitations
• Not guaranteed to find the global optimum 

• Choosing the step size is a nuisance 

• Only takes into account gradient information 

• Each iteration requires an entire pass through the data set
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Limitations
• Not guaranteed to find the global optimum 

• Choosing the step size is a nuisance 

• Only takes into account gradient information 

• Each iteration requires an entire pass through the data set

Do multiple random restarts and pick best run [higher 
dimensions make this less effective]

RMSprop, AdaGrad, Adam [have their own hyperparameters]

Newton’s method [requires second derivative]

Stochastic gradient descent…



Gradient descent

• We minimize the loss with respect to parameters 

• Gradient descent 

• Too expensive: N can be large 

• Early iterations: does a full pass over the data based on “bad” 
initial parameters
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Inference: SGD
• Stochastic gradient ascent
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Inference: SGD
• Stochastic gradient ascent

DATA
“NEW DATA”

• Subsample a minibatch of  data 

• Pretend that you dataset 
consists of  this minibatch



Inference: SGD
• Stochastic gradient ascent

DATA
“NEW DATA”

• At each iteration of  gradient 
descent, subsample a new minibatch 

• Eventually, we end up using the 
entire dataset



Inference: SGD
• Why does this work? (Analogy). Helps avoid local optima. 

• Need learning rate to have the following properties: 

• [Robbins & Monro, 1951]
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Issues in SGD
• Tradeoffs in learning rate: 

• too low, convergence may take a very long time  

• too high, may not converge at all 

• Stopping criteria: use validation data 

• Convexity vs. non-convexity



Automatic Differentiation
• Modern ML systems are often implemented in libraries that allow you to 

automatically find gradients of  “arbitrary” models. 
• Advantages:  

• modular approach to learning rates, model components, error functions 
• reduce bugs, no manual derivation 
• software encapsulation of  models (i.e. easier model comparison) 

• Limitations:  
• handling “arbitrary” models is the goal not the current state (e.g., how are 

time series handled?



Computational Graph

• The computational graph defines: 

A. Data 

B. Variables 

C. Computations (network architecture, loss) 

D. Optimizer 

E. Other tasks (e.g., predictions on test)



Computational Graph

• The computational graph 

• does not compute anything 

• does not hold any values 

• just specifies the model 
and variables
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Sessions

• A session allows you to 

• execute graph (or part of  the graph) 

• allocate memory to hold variables 

• do computations



Computational Graph & Sessions
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Computational Graph & Sessions



Placeholders

• A placeholder 
• declares a variable with no specified value 
• “promises” to specify the value later 



Placeholders
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Placeholders



Summary

• Gradient descent does maximum likelihood estimation 

• Step sizes 

• Stochastic gradient descent


