
The	Perceptron	and	Kernels

James	McInerney
Adapted	from	slides	by	Nakul	Verma

Announcement

• HW1	is	out	http://jamesmc.com/COMS4771.html
• Due	Oct	6th

Topic	from	previous	weeks

• Discriminative	Classifiers
• Nearest	neighbors
• Decision	trees

• Generative	Classifier
• Naïve	Bayes
• Gaussian	discriminant	analysis

A	Closer	Look	Classification

x

O

Knowing	the	boundary	is	
enough	for	classification

Linear	Decision	Boundary

Weight

He
ig
ht male	data

female	data

(What	happens	in	multi-class	case?)
Assume	binary	classification	y=	{-1,+1}

Learning	Linear	Decision	Boundaries

g =	decision	boundary

f	=	linear	classifier

d=1	case:

+1			if	g(x)	³ 0
-1				if	g(x)	<	0

general:

#	of	parameters	to	learn	in	Rd?

Dealing	with	w0

homogeneous	

= .
bias

The	Linear	Classifier

x1 x2 xd…

Si wi xi

1

bias

A	basic	computational	unit	in	a	neuron	

linear

popular	nonlinearities

non-linear threshold

sigmoid

+w0

Can	Be	Combined	to	Make	a	Network

x1 x2 xd…

An	artificial	neural	network

x3

…

… Amazing	fact:
Can	approximate	any	
smooth	function!

How	to	Learn	the	Weights?

Given	labeled	training	data	(bias	included):	
Want:							,	which	minimizes the	training	error,	i.e.

• Cannot	use	the	standard	technique	(take	derivate	and	examine	the	
stationary	points).	Why?

How	do	we	minimize?

Unfortunately:	NP-hard	to	solve

Finding	Weights	(Relaxed	Assumptions)

Can	we	approximate	the	weights	if	we	make	reasonable	assumptions?

What	if	the	training	data	is	linearly	separable?

Linear	Separablity

Say	there	is	a	linear decision	boundary	which	can	perfectly	separate	the	
training	data

distance	of	the	closest	
point	to	the	boundary
(margin	g)

Finding	Weights

Given:	labeled	training	data			S	=

Want	to	determine:		is	there	a							which	satisfies																													(for	all	i)

Since	there	are	d+1	variables	and	|S|	constraints,	it	is	possible	to	solve	
efficiently	it	via	a	(constraint)	optimization	program.

i.e.,	is	the	training	data	linearly	separable?

Can	find	it	in	a	much	simplerway!

The	Perceptron	Algorithm

Given:	labelled	training	data			S	=

Initialize										=	0
For	t	=	1,2,3,…

If	exists																					s.t.

(terminate	when	no	such	training	sample	exists)		

Perceptron	Algorithm:	Geometry

Perceptron	Algorithm:	Geometry

The	Perceptron	Algorithm

Input:	labelled	training	data			S	=

Initialize										=	0
For	t	=	1,2,3,…

If	exists																					s.t.

(terminate	when	no	such	training	sample	exists)		

What	Good	is	a	Mistake	Bound?

• It’s	an	upper	bound	on	the	number	of	mistakes	made	by	an	online	
algorithmon	an	arbitrary	sequence	of	examples	

• Online	algorithms	with	small	mistake	bounds	can	be	used	to	develop	
classifiers	with	good	generalization	error!

i.e.	no	i.i.d.	assumption	and	not	loading	all	the	data	at	once!	

Linear	Classification

Linear	classification	simple,	
but…	when	is	real-data	(even	approximately)	linearly	separable?

What	about	non-linear	decision	boundaries?

Non	linear	decision	boundaries	are	common:

x

Generalizing	Linear	Classification

separable	via	a	circular	decision	boundary

Suppose	we	have	the	following	training	data:

d=2	case:

say,	the	decision	boundary	is	
some	sort	of	ellipse

not	linear	in							!

e.g.	circle	of	radius	r:

But	g	is Linear	in	some Space!

So	if	we	apply	a	feature	transformation	on	our	data:

Then	g becomes	linear	in	f - transformed	feature	space!

non	linear	in	x1 &	x2

non	linear	in	c1 &	c2

Feature	Transformation	Geometrically

Feature	Transform	for	Quadratic	Boundaries

R2 case:	(generic	quadratic	boundary)

Rd case:	(generic	quadratic	boundary)

feature	transformation:	

feature	transformation:	

This	captures	all	pairwise	
interactions between variables

Data	is	Linearly	Separable	in	some	Space!

Theorem:
Given	n	labeled	points																																																						yi =	{-1,+1},
there	exists	a	feature	transform	where	the	data	points	are	linearly	separable.

the	proof	is	almost	trivial!

(this	feature	transform	is	sometimes	called	the	Kernel	transform)	

Proof

Given	n points,	consider	the	mapping	into	Rn:

Then,	the	decision	boundary	induced	by	linear	weighting
perfectly	separates	the	input	data!

0

0
yi
0

0

(zero	in	all	coordinates	
except	in	coordinate	 i)

Transforming	the	Data	into	Kernel	Space

Pros:
Any	problem	becomes	linearly	separable!

Cons:
What	about	computation?	Generic	kernel	transform	is	W(n)

What	about	model	complexity?

Some	useful	kernel	transforms	map	the	input	space	
into	infinite	dimensional	space!

Generalization	performance	typically	degrades	with	model	complexity

The	Kernel	Trick	(to	Deal	with	Computation)	

Explicitly	working	in	generic	Kernel	space														takes	time	W(n)

But	the	dot	productbetween	two	data	points	in	kernel	space	can	be	
computed	relatively	quickly

can	compute	fast

Example: quadratic	kernel	transform	for	data	in	Rd

explicit	transform				O(d2)
dot	products													O(d)

RBF	(radial	basis	function)	kernel	transform	for	data	in	Rd

explicit	transform				infinite	dimension!
dot	products												O(d)

The	Kernel	Trick

The	trick	is	to	perform	classification	in	such	a	way	that	it	only	accesses	the	
data in	terms	of	dot	products (so	it	can	be	done	quicker)

Example:		 the	`kernel	Perceptron’

Recall:

Equivalently ai =	#	of	time	mistake	was	made	on	xk

Thus,	classification	becomes	

Only	accessing	data	in	
terms	of	dot	products!	

The	Kernel	Trick:	for	Perceptron

Algorithm:
Initialize							=	0
For	t	=	1,2,3,…,	 T
If	exists																					 s.t.

If	we	were	working	in	the	transformed	Kernel	space,	it	would	have	been	

classification	in	original	space:

implicitly	working	in	
non-linear	kernel	space!

The	Kernel	Trick:	Significance

dot	products	are	a	measure	of	similarity

Can	be	replaced	by	any	user-
defined	measure	of	similarity!

So,	we	can	work	in	any	user-defined	non-linear	space	implicitly
without the	potentially	heavy	computational	cost

What	We	Learned…

• Decision	boundaries	for	classification

• Linear	decision	boundary	(linear	classification)

• The	Perceptron	algorithm

• Mistake	bound	for	the	perceptron	

• Generalizing	to	non-linear	boundaries	(via	Kernel	space)

• Problems	become	linear	in	Kernel	space

• The	Kernel	trick	to	speed	up	computation

Questions?

Perceptron	Algorithm:	Guarantee

Theorem	(Perceptron	mistake	bound):
Assume	there	is	a	(unit	length)							that	can	separate	the	training	sample	S	
with	margin	g
Let	R	=

Then,	the	perceptron	algorithm	will	make	at	most																									mistakes.

Thus,	the	algorithm	will	terminate	in	T	rounds!

umm…	but	what	about	the	generalization	or	the	test	error?

Proof

Key	quantity	to	analyze:	
How	far	is											from								?

Suppose	the	perceptron	algorithm	makes	a	mistake	in	iteration	t,	then

Proof	(contd.)

for	all	iterations	t

So,	after	T	rounds

Therefore:

