Nearest neighbors classifiers

James McInerney Adapted from slides by Daniel Hsu

Sept 11, 2017

Housekeeping

- We received 167 HW0 submissions on Gradescope before midnight Sept 10th.
- From a random sample, most look well done and are using the question assignment mechanism on Gradescope correctly.
- Example assignment submission.
- I received a few late submission emails. This one time only, I will turn the Gradescope submission page on again after class until 8pm EST.
- We will go over the trickiest parts of the homework at the beginning of the talk this Wednesday. Therefore I have pushed the first office hours to Wednesday.
- Here are the dates of the two exams for this course:
 - Exam 1: Wednesday October 18th, 2017
 - Exam 2: Monday December 11th, 2017

- 1. Classify images of handwritten digits by the actual digits they represent.
- 2. Classification problem: $\mathcal{Y} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ (a discrete set).

Nearest neighbor (NN) classifier

Given: labeled examples $D := \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$

Predictor: $\hat{f}_D : \mathcal{X} \to \mathcal{Y}$

On input x,

- 1. Find the point x_i among $\{x_i\}_{i=1}^n$ that is "closest" to x (the *nearest neighbor*).
- 2. Return y_i .

How to measure distance?

A default choice for distance between points in \mathbb{R}^d is the *Euclidean distance* (also called ℓ_2 distance):

$$\|\boldsymbol{u} - \boldsymbol{v}\|_2 := \sqrt{\sum_{i=1}^d (u_i - v_i)^2}$$

(where
$$u = (u_1, u_2, \dots, u_d)$$
 and $v = (v_1, v_2, \dots, v_d)$).

Grayscale 28×28 pixel images.

Treat as vectors (of 784 real-valued features) that live in \mathbb{R}^{784} .

Classify images of handwritten digits by the digits they depict.

0123456789

Classify images of handwritten digits by the digits they depict.

0123456789

• $\mathcal{X} = \mathbb{R}^{784}, \ \mathcal{Y} = \{0, 1, \dots, 9\}.$

Classify images of handwritten digits by the digits they depict.

0123456789

•
$$\mathcal{X} = \mathbb{R}^{784}$$
, $\mathcal{Y} = \{0, 1, \dots, 9\}$.

• Given: labeled examples $D := \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}.$

Classify images of handwritten digits by the digits they depict.

0123456789

•
$$\mathcal{X} = \mathbb{R}^{784}, \ \mathcal{Y} = \{0, 1, \dots, 9\}.$$

• Given: labeled examples
$$D := \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$$
.

• Construct NN classifier \hat{f}_D using D.

Classify images of handwritten digits by the digits they depict.

0123456789

•
$$\mathcal{X} = \mathbb{R}^{784}, \ \mathcal{Y} = \{0, 1, \dots, 9\}.$$

- Given: labeled examples $D := \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}.$
- Construct NN classifier \hat{f}_D using D.
- Question: Is this classifier any good?

• *Error rate* of classifier *f* on a set of labeled examples *D*:

$$\operatorname{err}_D(f) := \frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$$

(i.e., the fraction of D on which f disagrees with paired label).

• *Error rate* of classifier *f* on a set of labeled examples *D*:

$$\operatorname{err}_D(f) := \frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$$

(i.e., the fraction of D on which f disagrees with paired label).

• Sometimes, we'll write this as err(f, D).

• *Error rate* of classifier *f* on a set of labeled examples *D*:

$$\operatorname{err}_D(f) := \frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$$

(i.e., the fraction of D on which f disagrees with paired label).

- Sometimes, we'll write this as err(f, D).
- Question: What is $\operatorname{err}_D(\hat{f}_D)$?

- Split the labeled examples $\{(x_i, y_i)\}_{i=1}^n$ into two sets (randomly).
 - ▶ Training data S.
 - Test data T.

- Split the labeled examples $\{(x_i, y_i)\}_{i=1}^n$ into two sets (randomly).
 - ▶ Training data S.
 - ► Test data T.
- Only use *training data* S to construct NN classifier \hat{f}_S .

- Split the labeled examples $\{(x_i, y_i)\}_{i=1}^n$ into two sets (randomly).
 - ▶ Training data S.
 - Test data T.
- Only use *training data* S to construct NN classifier \hat{f}_S .
 - Training error rate of \hat{f}_S : $\operatorname{err}_S(\hat{f}_S) = 0\%$.

- Split the labeled examples $\{(x_i, y_i)\}_{i=1}^n$ into two sets (randomly).
 - Training data S.
 - ► Test data T.
- Only use *training data* S to construct NN classifier \hat{f}_S .
 - Training error rate of \hat{f}_S : $\operatorname{err}_S(\hat{f}_S) = 0\%$.
- Use test data T to evaluate accuracy of \hat{f}_S .

- Split the labeled examples $\{(x_i, y_i)\}_{i=1}^n$ into two sets (randomly).
 - Training data S.
 - Test data T.
- Only use *training data* S to construct NN classifier \hat{f}_S .
 - Training error rate of \hat{f}_S : $\operatorname{err}_S(\hat{f}_S) = 0\%$.
- Use test data T to evaluate accuracy of \hat{f}_S .
 - Test error rate of \hat{f}_S : $\operatorname{err}_T(\hat{f}_S) = 3.09\%$.

- Split the labeled examples $\{(x_i, y_i)\}_{i=1}^n$ into two sets (randomly).
 - Training data S.
 - Test data T.

• Only use *training data* S to construct NN classifier \hat{f}_S .

• Training error rate of \hat{f}_S : $\operatorname{err}_S(\hat{f}_S) = 0\%$.

• Use test data T to evaluate accuracy of \hat{f}_S .

• Test error rate of \hat{f}_S : $\operatorname{err}_T(\hat{f}_S) = 3.09\%$.

Is this good?

Some mistakes made by the NN classifier (test point in T, nearest neighbor in S):

28 35 54

▶ First mistake (correct label is "2") could've been avoided by looking at the *three* nearest neighbors (whose labels are "8", "2", and "2").

Given: labeled examples $D := \{(x_i, y_i)\}_{i=1}^n$ Predictor: $\hat{f}_{D,k} \colon \mathcal{X} \to \mathcal{Y}$:

On input x,

- 1. Find the k points $x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ among $\{x_i\}_{i=1}^n$ "closest" to x (the k nearest neighbors).
- 2. Return the plurality of $y_{i_1}, y_{i_2}, \ldots, y_{i_k}$.

(Break ties in both steps arbitrarily.)

- ► Smaller k: smaller training error rate.
- Larger k: higher training error rate, but predictions are more "stable" due to voting.

k	1	3	5	7	9			
Test error rate	0.0309	0.0295	0.0312	0.0306	0.0341			

OCR digits classification

The hold-out set approach

- 1. Pick a subset $V \subset S$ (hold-out set, a.k.a. validation set).
- 2. For each $k \in \{1, 3, 5, ...\}$:
 - Construct k-NN classifier $\hat{f}_{S \setminus V,k}$ using $S \setminus V$.
 - ► Compute error rate of f̂_{S\V,k} on V ("hold-out error rate").
- 3. Pick the k that gives the smallest hold-out error rate.

► Lp norm

dist
$$(u, v) = ||x_1^p + x_2^p + \dots + x_d^p||^{\frac{1}{p}}$$

► Lp norm

 $dist(u, v) = ||x_1^p + x_2^p + \dots + x_d^p||^{\frac{1}{p}}$ **OCR digits classification** <u>Distance</u> ℓ_2 ℓ_3 <u>Test error rate</u> 3.09% 2.83\%

► Lp norm

dist
$$(u, v) = ||x_1^p + x_2^p + \dots + x_d^p||^{\frac{1}{p}}$$

OCR digits classification

Distance	ℓ_2	ℓ_3
Test error rate	3.09%	2.83%

Manhattan distance

dist(u, v) = distance on grid between u and v on strict horizontal/vertical path

Lp norm

dist
$$(u, v) = ||x_1^p + x_2^p + \dots + x_d^p||^{\frac{1}{p}}$$

OCR digits classification

Distance	ℓ_2	ℓ_3	
Test error rate	3.09%	2.83%	

Manhattan distance

dist(u, v) = distance on grid between u and v on strict horizontal/vertical path

String edit distance

 $\operatorname{dist}(u,v) = \#$ insertions/deletions/mutations needed to change u to v

Caution: nearest neighbor classifier can be broken by bad/noisy features!

- 1. How good is the classifier learned using NN on your problem?
- 2. Is NN a good learning method in general?

Basic assumption (main idea):

labeled examples $\{(\pmb{x}_i, y_i\}_{i=1}^n$ come from same source as future examples.

Basic assumption (main idea):

labeled examples $\{(x_i, y_i)\}_{i=1}^n$ come from same source as future examples.

More formally:

 $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ is an *i.i.d. sample* from a probability distribution P over $\mathcal{X} \times \mathcal{Y}$.

▶ Define the *(true) error rate* of a classifier $f: \mathcal{X} \to \mathcal{Y}$ w.r.t. *P* to be

$$\operatorname{err}_P(f) := P(f(\boldsymbol{X}) \neq Y)$$

where (X, Y) is a pair of random variables with joint distribution P (i.e., $(X, Y) \sim P$).

▶ Define the *(true) error rate* of a classifier $f: \mathcal{X} \to \mathcal{Y}$ w.r.t. *P* to be

$$\operatorname{err}_P(f) := P(f(\boldsymbol{X}) \neq Y)$$

where (X, Y) is a pair of random variables with joint distribution P (i.e., $(X, Y) \sim P$).

• Let \hat{f}_S be classifier trained using labeled examples S.

▶ Define the *(true) error rate* of a classifier $f: \mathcal{X} \to \mathcal{Y}$ w.r.t. *P* to be

$$\operatorname{err}_P(f) := P(f(\boldsymbol{X}) \neq Y)$$

where (X, Y) is a pair of random variables with joint distribution P (i.e., $(X, Y) \sim P$).

- Let \hat{f}_S be classifier trained using labeled examples S.
- ▶ True error rate of \hat{f}_S is

$$\operatorname{err}_P(\hat{f}_S) := P(\hat{f}_S(\boldsymbol{X}) \neq Y).$$

▶ Define the *(true) error rate* of a classifier $f: \mathcal{X} \to \mathcal{Y}$ w.r.t. *P* to be

$$\operatorname{err}_P(f) := P(f(\boldsymbol{X}) \neq Y)$$

where (X, Y) is a pair of random variables with joint distribution P (i.e., $(X, Y) \sim P$).

- Let \hat{f}_S be classifier trained using labeled examples S.
- ▶ True error rate of \hat{f}_S is

$$\operatorname{err}_P(\widehat{f}_S) := P(\widehat{f}_S(\boldsymbol{X}) \neq Y).$$

▶ We cannot compute this without knowing *P*.

Suppose { (x_i, y_i)ⁿ_{i=1} (assumed to be an i.i.d. sample from P) is randomly split into S and T, and f̂_S is based only on S.
- ▶ Suppose $\{(x_i, y_i)_{i=1}^n$ (assumed to be an i.i.d. sample from *P*) is randomly split into *S* and *T*, and \hat{f}_S is based only on *S*.
- \hat{f}_S and T are *independent*, and the *test error rate* of \hat{f}_S is an *unbiased* estimate of the true error rate of \hat{f}_S .

- Suppose {(x_i, y_i)ⁿ_{i=1} (assumed to be an i.i.d. sample from P) is randomly split into S and T, and f̂_S is based only on S.
- \hat{f}_S and T are *independent*, and the *test error rate* of \hat{f}_S is an *unbiased* estimate of the true error rate of \hat{f}_S .
- If |T| = m, then the test error rate err_T(f̂_S) of f̂_S (conditional on S) is a binomial random variable (scaled by 1/m):

 $m \cdot \operatorname{err}_{T}(\hat{f}_{S}) \mid S \sim \operatorname{Bin}(m, \operatorname{err}_{P}(\hat{f}_{S})).$

- Suppose {(x_i, y_i)ⁿ_{i=1} (assumed to be an i.i.d. sample from P) is randomly split into S and T, and f̂_S is based only on S.
- \hat{f}_S and T are *independent*, and the *test error rate* of \hat{f}_S is an *unbiased* estimate of the true error rate of \hat{f}_S .
- If |T| = m, then the test error rate err_T(f̂_S) of f̂_S (conditional on S) is a binomial random variable (scaled by 1/m):

 $m \cdot \operatorname{err}_{T}(\hat{f}_{S}) \mid S \sim \operatorname{Bin}(m, \operatorname{err}_{P}(\hat{f}_{S})).$

 ▶ The expected value of err_T(f̂_S) is err_P(f̂_S). (This means that err_T(f̂_S) is an unbiased estimator of err_P(f̂_S).)

• Binary classification: $\mathcal{Y} = \{0, 1\}.$

- Binary classification: $\mathcal{Y} = \{0, 1\}.$
- Probability distribution P over $\mathcal{X} \times \{0,1\}$; let $(\mathbf{X}, Y) \sim P$.

• Binary classification: $\mathcal{Y} = \{0, 1\}.$

• Probability distribution P over $\mathcal{X} \times \{0,1\}$; let $(\mathbf{X}, Y) \sim P$.

▶ Think of *P* as being comprised of two parts.

- 1. Marginal distribution μ of X (a distribution over \mathcal{X}).
- 2. Conditional distribution of Y given X = x, for each $x \in \mathcal{X}$:

$$\eta(\boldsymbol{x}) := P(Y = 1 \mid \boldsymbol{X} = \boldsymbol{x}).$$

• Binary classification: $\mathcal{Y} = \{0, 1\}.$

• Probability distribution P over $\mathcal{X} \times \{0,1\}$; let $(\mathbf{X}, Y) \sim P$.

▶ Think of *P* as being comprised of two parts.

- 1. Marginal distribution μ of X (a distribution over \mathcal{X}).
- 2. Conditional distribution of Y given X = x, for each $x \in \mathcal{X}$:

$$\eta(\boldsymbol{x}) := P(Y = 1 \mid \boldsymbol{X} = \boldsymbol{x}).$$

If η(x) is 0 or 1 for all x ∈ X where μ(x) > 0, then optimal error rate is zero (i.e., min_f err_P(f) = 0).

• Binary classification: $\mathcal{Y} = \{0, 1\}.$

• Probability distribution P over $\mathcal{X} \times \{0,1\}$; let $(\mathbf{X}, Y) \sim P$.

▶ Think of *P* as being comprised of two parts.

- 1. Marginal distribution μ of X (a distribution over \mathcal{X}).
- 2. Conditional distribution of Y given X = x, for each $x \in \mathcal{X}$:

$$\eta(x) := P(Y = 1 | X = x).$$

- If η(x) is 0 or 1 for all x ∈ X where μ(x) > 0, then optimal error rate is zero (i.e., min_f err_P(f) = 0).
- Otherwise it is non-zero.

What is the classifier with smallest true error rate?

$$f^{\star}(x) := \begin{cases} 0 & \text{if } \eta(x) \le 1/2; \\ 1 & \text{if } \eta(x) > 1/2. \end{cases}$$

(Do you see why?)

What is the classifier with smallest true error rate?

$$f^{\star}(x) := \begin{cases} 0 & \text{if } \eta(x) \le 1/2; \\ 1 & \text{if } \eta(x) > 1/2. \end{cases}$$

(Do you see why?)

▶ *f*^{*} is called the *Bayes (optimal) classifier*, and

$$\operatorname{err}_P(f^{\star}) = \min_f \operatorname{err}_P(f) = \mathbb{E}\Big[\min\{\eta(\boldsymbol{X}), 1 - \eta(\boldsymbol{X})\}\Big]$$

which is called the Bayes (optimal) error rate.

What is the classifier with smallest true error rate?

$$f^{\star}(x) := \begin{cases} 0 & \text{if } \eta(x) \le 1/2; \\ 1 & \text{if } \eta(x) > 1/2. \end{cases}$$

(Do you see why?)

• f^* is called the *Bayes (optimal) classifier*, and

$$\operatorname{err}_{P}(f^{\star}) = \min_{f} \operatorname{err}_{P}(f) = \mathbb{E}\left[\min\left\{\eta(\boldsymbol{X}), 1 - \eta(\boldsymbol{X})\right\}\right]$$

which is called the Bayes (optimal) error rate.

Question:

How far from optimal is the classifier produced by the NN learning method?

Consistency of *k*-NN

We say that a learning algorithm A is **consistent** if

$$\lim_{n \to \infty} \mathbb{E}\left[\operatorname{err}_P(\hat{f}_n) \right] = \operatorname{err}(f^\star),$$

where \hat{f}_n is the classifier learned using A on an i.i.d. sample of size n.

Theorem (e.g., Cover and Hart 1967)

Assume η is continuous. Then:

- 1-NN is consistent if $\min_f \operatorname{err}_P(f) = 0$.
- ▶ k-NN is consistent, provided that k := k_n is chosen as an increasing but sublinear function of n:

$$\lim_{n \to \infty} k_n = \infty, \qquad \lim_{n \to \infty} \frac{k_n}{n} = 0.$$

- 1. k-NN learning procedure; role of k, distance functions, features.
- 2. Training and test error rates.
- 3. Framework of statistical learning theory; estimating the "true" error rate; Bayes optimality; high-level idea of consistency.

denote our classifier as f

- \blacktriangleright denote our classifier as f
- what does f(x) mean?

- \blacktriangleright denote our classifier as f
- what does f(x) mean?
- \blacktriangleright denote the dataset as D

- \blacktriangleright denote our classifier as f
- what does f(x) mean?
- denote the dataset as D
- what is $\operatorname{err}_D(f)$?

- \blacktriangleright denote our classifier as f
- what does f(x) mean?
- denote the dataset as D
- what is $\operatorname{err}_D(f)$? $\frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$

- \blacktriangleright denote our classifier as f
- what does f(x) mean?
- denote the dataset as D
- what is $\operatorname{err}_D(f)$? $\frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$
- what does $P(\mathbf{X}, Y)$ mean?

- \blacktriangleright denote our classifier as f
- what does f(x) mean?
- denote the dataset as D
- what is $\operatorname{err}_D(f)$? $\frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$
- what does $P(\mathbf{X}, Y)$ mean?
- what is $\operatorname{err}_P(f)$?

- \blacktriangleright denote our classifier as f
- what does f(x) mean?
- denote the dataset as D
- what is $\operatorname{err}_D(f)$? $\frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$
- what does $P(\mathbf{X}, Y)$ mean?
- what is $\operatorname{err}_P(f)$? $\mathbb{E}_P[\mathbb{I}[f(\mathbf{X}) \neq Y]]$

- \blacktriangleright denote our classifier as f
- what does f(x) mean?
- denote the dataset as D
- what is $\operatorname{err}_D(f)$? $\frac{\# \text{ of } (\boldsymbol{x}, y) \in D \text{ such that } f(\boldsymbol{x}) \neq y}{|D|}$
- what does $P(\mathbf{X}, Y)$ mean?
- what is $\operatorname{err}_P(f)$? $\mathbb{E}_P[\mathbb{I}[f(\mathbf{X}) \neq Y]] = P(f(\mathbf{X}) \neq Y)$

what is an estimator?

- what is an estimator?
- using definitions from previous slide, what is $err_D(f)$ an *estimator* of?

- what is an estimator?
- using definitions from previous slide, what is $\operatorname{err}_D(f)$ an *estimator* of? $\operatorname{err}_P(f)$

- what is an estimator?
- using definitions from previous slide, what is $\operatorname{err}_D(f)$ an *estimator* of? $\operatorname{err}_P(f)$
- what is an unbiased estimator?

- what is an estimator?
- using definitions from previous slide, what is $\operatorname{err}_D(f)$ an *estimator* of? $\operatorname{err}_P(f)$
- what is an *unbiased* estimator? $\mathbb{E}[\operatorname{err}_D(f)] = \operatorname{err}_P(f)$

- what is an estimator?
- using definitions from previous slide, what is $\operatorname{err}_D(f)$ an *estimator* of? $\operatorname{err}_P(f)$
- what is an *unbiased* estimator? $\mathbb{E}[\operatorname{err}_D(f)] = \operatorname{err}_P(f)$
- what on earth does that mean?

- what is an estimator?
- using definitions from previous slide, what is $\operatorname{err}_D(f)$ an *estimator* of? $\operatorname{err}_P(f)$
- what is an *unbiased* estimator? $\mathbb{E}[\operatorname{err}_D(f)] = \operatorname{err}_P(f)$
- ▶ what on earth does that mean? if we repeatedly draw datasets of size n, $D \sim_n P(\mathbf{X}, Y)$ and calculate $\operatorname{err}_D(f)$, the average will converge to $\operatorname{err}_P(f)$

- what is an estimator?
- using definitions from previous slide, what is $\operatorname{err}_D(f)$ an *estimator* of? $\operatorname{err}_P(f)$
- what is an *unbiased* estimator? $\mathbb{E}[\operatorname{err}_D(f)] = \operatorname{err}_P(f)$
- ▶ what on earth does that mean? if we repeatedly draw datasets of size n, $D \sim_n P(\mathbf{X}, Y)$ and calculate $\operatorname{err}_D(f)$, the average will converge to $\operatorname{err}_P(f)$
- why should we care?

 $\blacktriangleright~$ let \widehat{f}_n mean a classifier trained using n examples

- $\blacktriangleright~$ let \widehat{f}_n mean a classifier trained using n examples
- what is the property $\lim_{n\to\infty} \mathbb{E}\left[\operatorname{err}_P(\hat{f}_n)\right] = \operatorname{err}(f^*)$?

- $\blacktriangleright~$ let \widehat{f}_n mean a classifier trained using n examples
- ▶ what is the property $\lim_{n\to\infty} \mathbb{E}\left[\operatorname{err}_P(\hat{f}_n)\right] = \operatorname{err}(f^*)$? consistency

- let \hat{f}_n mean a classifier trained using n examples
- what is the property $\lim_{n\to\infty} \mathbb{E}\left[\operatorname{err}_P(\hat{f}_n)\right] = \operatorname{err}(f^*)$? consistency
- what is the ideal classifier f^* also known as?

- $\blacktriangleright~$ let \widehat{f}_n mean a classifier trained using n examples
- what is the property $\lim_{n\to\infty} \mathbb{E}\left[\operatorname{err}_P(\hat{f}_n)\right] = \operatorname{err}(f^*)$? consistency
- what is the ideal classifier f^{\star} also known as? the Bayes optimal classifier

- let \hat{f}_n mean a classifier trained using n examples
- ▶ what is the property $\lim_{n\to\infty} \mathbb{E}\left[\operatorname{err}_P(\hat{f}_n)\right] = \operatorname{err}(f^*)$? consistency
- what is the ideal classifier f^{\star} also known as? the Bayes optimal classifier
- how can we define f^* ?
- let \hat{f}_n mean a classifier trained using n examples
- ▶ what is the property $\lim_{n\to\infty} \mathbb{E}\left[\operatorname{err}_P(\hat{f}_n)\right] = \operatorname{err}(f^*)$? consistency
- ▶ what is the ideal classifier f^{\star} also known as? the Bayes optimal classifier
- ► how can we define f^* ? $\operatorname{err}_P(f^*) = \min_f \operatorname{err}_P(f) = \mathbb{E}\left[\min\{\eta(\boldsymbol{X}), 1 - \eta(\boldsymbol{X})\}\right]$