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Housekeeping

I We received 167 HW0 submissions on Gradescope before midnight Sept
10th.

I From a random sample, most look well done and are using the question
assignment mechanism on Gradescope correctly.

I Example assignment submission.

I I received a few late submission emails. This one time only, I will turn the
Gradescope submission page on again after class until 8pm EST.

I We will go over the trickiest parts of the homework at the beginning of
the talk this Wednesday. Therefore I have pushed the first office hours to
Wednesday.

I Here are the dates of the two exams for this course:

I Exam 1: Wednesday October 18th, 2017
I Exam 2: Monday December 11th, 2017
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Example: OCR for digits

1. Classify images of handwritten digits by the actual digits they represent.

2. Classification problem: Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (a discrete set).
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Nearest neighbor (NN) classifier

Given: labeled examples D := {(xi, yi)}ni=1

Predictor: f̂D : X → Y

On input x,

1. Find the point xi among {xi}ni=1 that is “closest” to x
(the nearest neighbor).

2. Return yi.
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How to measure distance?

A default choice for distance between points in Rd is the Euclidean distance
(also called `2 distance):

‖u− v‖2 :=

√√√√ d∑
i=1

(ui − vi)2

(where u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd)).

Grayscale 28×28 pixel images.

Treat as vectors (of 784 real-valued features)
that live in R784.
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Example: OCR for digits with NN classifier

I Classify images of handwritten digits by the digits they depict.

I X = R784, Y = {0, 1, . . . , 9}.

I Given: labeled examples D := {(xi, yi)}ni=1 ⊂ X × Y.

I Construct NN classifier f̂D using D.

I Question: Is this classifier any good?
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Error rate

I Error rate of classifier f on a set of labeled examples D:

errD(f) :=
# of (x, y) ∈ D such that f(x) 6= y

|D|

(i.e., the fraction of D on which f disagrees with paired label).

I Sometimes, we’ll write this as err(f,D).

I Question: What is errD(f̂D)?
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A better way to evaluate the classifier

I Split the labeled examples {(xi, yi)}ni=1 into two sets (randomly).

I Training data S.
I Test data T .

I Only use training data S to construct NN classifier f̂S .

I Training error rate of f̂S : errS(f̂S) = 0%.

I Use test data T to evaluate accuracy of f̂S .

I Test error rate of f̂S : errT (f̂S) = 3.09%.

Is this good?
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Diagnostics

I Some mistakes made by the NN classifier

(test point in T , nearest neighbor in S):

I First mistake (correct label is “2”) could’ve been avoided by looking at
the three nearest neighbors (whose labels are “8”, “2”, and “2”).

test point three nearest neighbors
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k-nearest neighbors classifier

Given: labeled examples D := {(xi, yi)}ni=1

Predictor: f̂D,k : X → Y:

On input x,

1. Find the k points xi1 ,xi2 , . . . ,xik among {xi}ni=1 “closest” to x
(the k nearest neighbors).

2. Return the plurality of yi1 , yi2 , . . . , yik .

(Break ties in both steps arbitrarily.)
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Effect of k

I Smaller k: smaller training error rate.

I Larger k: higher training error rate, but predictions are more “stable” due
to voting.

OCR digits classification
k 1 3 5 7 9

Test error rate 0.0309 0.0295 0.0312 0.0306 0.0341
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Choosing k

The hold-out set approach

1. Pick a subset V ⊂ S (hold-out set, a.k.a. validation set).
2. For each k ∈ {1, 3, 5, . . . }:

I Construct k-NN classifier f̂S\V,k using S \ V .

I Compute error rate of f̂S\V,k on V
(“hold-out error rate”).

3. Pick the k that gives the smallest hold-out error rate.
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Other distance functions

I Lp norm

dist(u, v) = ||xp1 + xp2 + · · ·+ xpd||
1
p

OCR digits classification

Distance `2 `3
Test error rate 3.09% 2.83%

I Manhattan distance

dist(u, v) = distance on grid between u and v on strict horizontal/vertical path

I String edit distance

dist(u, v) = # insertions/deletions/mutations needed to change u to v
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Bad features

Caution: nearest neighbor classifier can be broken by bad/noisy features!

Feature 1 
𝑦 = 0 𝑦 = 1

Feature 1

Feature 2

𝑦 = 0 𝑦 = 1
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Questions of interest

1. How good is the classifier learned using NN on your problem?

2. Is NN a good learning method in general?
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Statistical learning theory

Basic assumption (main idea):
labeled examples {(xi, yi}ni=1 come from same source as future examples.

P

past labeled examples learning algorithm

predicted label

new (unlabeled) example

learned predictor

from P

from

More formally:
{(xi, yi)}ni=1 is an i.i.d. sample from a probability distribution P over X × Y.
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Prediction error rate

I Define the (true) error rate of a classifier f : X → Y w.r.t. P to be

errP (f) := P (f(X) 6= Y )

where (X, Y ) is a pair of random variables with joint distribution P

(i.e., (X, Y ) ∼ P ).

I Let f̂S be classifier trained using labeled examples S.

I True error rate of f̂S is

errP (f̂S) := P (f̂S(X) 6= Y ) .

I We cannot compute this without knowing P .
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Estimating the true error rate

I Suppose {(xi, yi)
n
i=1 (assumed to be an i.i.d. sample from P ) is randomly

split into S and T , and f̂S is based only on S.

I f̂S and T are independent, and the test error rate of f̂S is an unbiased
estimate of the true error rate of f̂S .

I If |T | = m, then the test error rate errT (f̂S) of f̂S (conditional on S) is a
binomial random variable (scaled by 1/m):

m · errT (f̂S) | S ∼ Bin(m, errP (f̂S)) .

I The expected value of errT (f̂S) is errP (f̂S).

(This means that errT (f̂S) is an unbiased estimator of errP (f̂S).)
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Limits of prediction

I Binary classification: Y = {0, 1}.

I Probability distribution P over X × {0, 1}; let (X, Y ) ∼ P .

I Think of P as being comprised of two parts.

1. Marginal distribution µ of X (a distribution over X ).
2. Conditional distribution of Y given X = x, for each x ∈ X :

η(x) := P (Y = 1 |X = x) .

I If η(x) is 0 or 1 for all x ∈ X where µ(x) > 0,

then optimal error rate is zero (i.e., minf errP (f) = 0).

I Otherwise it is non-zero.
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Bayes optimality

I What is the classifier with smallest true error rate?

f?(x) :=

{
0 if η(x) ≤ 1/2;

1 if η(x) > 1/2.

(Do you see why?)

I f? is called the Bayes (optimal) classifier, and

errP (f
?) = min

f
errP (f) = E

[
min

{
η(X), 1− η(X)

}]
which is called the Bayes (optimal) error rate.

Question:
How far from optimal is the classifier produced by the NN learning method?
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Consistency of k-NN

We say that a learning algorithm A is consistent if

lim
n→∞

E
[
errP (f̂n)

]
= err(f?) ,

where f̂n is the classifier learned using A on an i.i.d. sample of size n.

Theorem (e.g., Cover and Hart 1967)
Assume η is continuous. Then:

I 1-NN is consistent if minf errP (f) = 0.

I k-NN is consistent, provided that k := kn is chosen as an increasing but
sublinear function of n:

lim
n→∞

kn = ∞ , lim
n→∞

kn
n

= 0 .
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Key takeaways

1. k-NN learning procedure; role of k, distance functions, features.

2. Training and test error rates.

3. Framework of statistical learning theory; estimating the “true” error rate;
Bayes optimality; high-level idea of consistency.
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Recap: definitions

I denote our classifier as f

I what does f(x) mean?

I denote the dataset as D

I what is errD(f)? # of (x, y) ∈ D such that f(x) 6= y
|D|

I what does P (X, Y ) mean?

I what is errP (f)? EP [I[f(X) 6= Y ]] = P (f(X) 6= Y )

23 / 25
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Recap: unbiased estimator

I what is an estimator?

I using definitions from previous slide, what is errD(f) an estimator of?
errP (f)

I what is an unbiased estimator? E[errD(f)] = errP (f)

I what on earth does that mean? if we repeatedly draw datasets of size n,
D ∼n P (X, Y ) and calculate errD(f), the average will converge to
errP (f)

I why should we care?
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Recap: consistent algorithm

I let f̂n mean a classifier trained using n examples

I what is the property limn→∞ E
[
errP (f̂n)

]
= err(f?)? consistency

I what is the ideal classifier f? also known as? the Bayes optimal classifier

I how can we define f??

errP (f
?) = minf errP (f) = E

[
min

{
η(X), 1− η(X)

}]
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