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Housekeeping

» We received 167 HWO0 submissions on Gradescope before midnight Sept
10th.

» From a random sample, most look well done and are using the question
assignment mechanism on Gradescope correctly.

» Example assignment submission.

» | received a few late submission emails. This one time only, | will turn the
Gradescope submission page on again after class until 8pm EST.

» We will go over the trickiest parts of the homework at the beginning of
the talk this Wednesday. Therefore | have pushed the first office hours to
Wednesday.

» Here are the dates of the two exams for this course:

» Exam 1: Wednesday October 18th, 2017
» Exam 2: Monday December 11th, 2017



1. Classify images of handwritten digits by the actual digits they represent.
2. Classification problem: Y ={0,1,2,3,4,5,6,7,8,9} (a discrete set).

000000060806 00000

V20 W T - S SR A A B S B
Arzr2azzplz222Jd
3333333333333 3
HAMY s Q ey ydgsd
S5y (IS5 ssSssy
66660666 060LG66HG6GEG6E
7?2F12777972177727
FPISIETE8EFNTEY]SF
127¢797935998949977¢

3/25



1

n
1=

{(i,y) }i

labeled examples D :

Given:

Q=M% s N o
O~NMKYe A oe e
QNNAMY LY Nw o
oNNmINONNT
Q-~N©®T Yhe hooo
VRN ARN D D
O~ OI 1S Nt o
ONN© WS [~
Q=AdMT A0 Nxe
O~ @I vo N
ONN P RLS R
QM0 —to N
S-NMY YO e
V—=cdm¥> Yoo
QN M T AN N

Predictor: fp: X — )

On input «,

tox

;1 that is “closest

n
1=

1. Find the point x; among {x;};

(the nearest neighbor).

2. Return y;.
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A default choice for distance between points in R? is the Euclidean distance
(also called ¢5 distance):

[w—wvll2 =

(where w = (u1,us,...,uq) and v = (v1,v2,...,vq)).

:H:

Grayscale 28x28 pixel images.

Treat as vectors (of 784 real-valued features)
that live in R™*.
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» Classify images of handwritten digits by the digits they depict.

0/ 13+ 5 b 72 AQ
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Classify images of handwritten digits by the digits they depict.
0/ 13 45b7 3 Qq

» X =R™® y={0,1,...,9}.
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Given: labeled examples D := {(z;,v:)}i=1 C X X V.

» Construct NN classifier fD using D.
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Example: OCR for digits with NN classifier

v

Classify images of handwritten digits by the digits they depict.
0/ 13 45b7 3 Qq

» X =R™® y=1{0,1,...,9}.

v

Given: labeled examples D := {(z;,v:)}i=1 C X X V.
» Construct NN classifier fD using D.

» Question: Is this classifier any good?



» Error rate of classifier f on a set of labeled examples D:

_ #of (z,y) € D such that f(xz) #y

errp(f) : D

(i.e., the fraction of D on which f disagrees with paired label).
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» Error rate of classifier f on a set of labeled examples D:

_ #of (z,y) € D such that f(xz) #y

errp(f) : D

(i.e., the fraction of D on which f disagrees with paired label).
> Sometimes, we'll write this as err(f, D).

> Question: What is errp(fp)?
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» Split the labeled examples {(z;,y:)}i—; into two sets (randomly).

» Training data S.
> Test data T
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» Split the labeled examples {(z;,y:)}i—; into two sets (randomly).
» Training data S.
> Test dataT.

» Only use training data S to construct NN classifier fs.

» Training error rate of fs: errs(fs) = 0%.

» Use test data T to evaluate accuracy of fs.
» Test error rate of fs: errr(fs) = 3.09%.

Is this good?
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» Some mistakes made by the NN classifier
(test point in T, nearest neighbor in S):

Z9 33 54

» First mistake (correct label is “2") could've been avoided by looking at
the three nearest neighbors (whose labels are “8", “2", and “2").

Z 272

test point  three nearest neighbors
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Given: labeled examples D := {(z;,yi)}i—
Predictor: fpr: X — ):

On input «,

1. Find the k points @;,, @i, . .., @i, among {x;}i—; “closest” to x
(the k nearest neighbors).
2. Return the plurality of yi,, ¥y, - .-, Yy, -

(Break ties in both steps arbitrarily.)
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» Smaller k: smaller training error rate.

> Larger k: higher training error rate, but predictions are more “stable” due
to voting.

OCR digits classification
k L+ | 38 | 5 | 7 | 9
Test error rate || 0.0309 | 0.0295 | 0.0312 | 0.0306 | 0.0341
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The hold-out set approach

1. Pick a subset V' C S (hold-out set, a.k.a. validation set).
2. Foreach k € {1,3,5,... }:

> Construct k-NN classifier fS\V,k using S\ V.

» Compute error rate of fS\V,k onV
(“hold-out error rate”).

3. Pick the k that gives the smallest hold-out error rate.
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» Lp norm
1
dist(u,v) = ||z} +ab + -+ 2h||»
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» Lp norm
1
dist(u,v) = ||z} +ab + -+ 2h||»

OCR digits classification
Distance || 12 | U3
Test error rate || 3.09% | 2.83%

» Manhattan distance

dist(u,v) = distance on grid between w and v on strict horizontal /vertical path

> String edit distance

dist(u,v) = # insertions/deletions/mutations needed to change u to v
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Caution: nearest neighbor classifier can be broken by bad/noisy features!

Feature 2
PN

Feature 1
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1. How good is the classifier learned using NN on your problem?

2. Is NN a good learning method in general?
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Basic assumption (main idea):
labeled examples {(x;,y:}i—; come from same source as future examples.
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Basic assumption (main idea):
labeled examples {(x;,y:}i—; come from same source as future examples.

new (unlabeled) example
¢ from P

past labeled examples — ‘ learning algorithm ‘ — ( learned predictor ]
from P

predicted label

More formally:
{(xi, i) }i=1 is an i.id. sample from a probability distribution P over X’ x ).
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> Define the (true) error rate of a classifier f: X — Y w.r.t. P to be

errp(f) = P(f(X) #Y)

where (X,Y) is a pair of random variables with joint distribution P
(ie., (X,Y) ~ P).
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where (X,Y) is a pair of random variables with joint distribution P
(ie., (X,Y) ~ P).

> Let fs be classifier trained using labeled examples S.

» True error rate of fs is

errp(fs) == P(fs(X)#Y).
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Define the (true) error rate of a classifier f: X — Y w.r.t. P to be
errp(f) = P(f(X)#Y)

where (X,Y) is a pair of random variables with joint distribution P
(ie., (X,Y) ~ P).

v

v

Let fs be classifier trained using labeled examples S.

True error rate of fs is

errp(fs) == P(fs(X)#Y).

v

» We cannot compute this without knowing P.
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> Suppose {(xi,y:)i=1 (assumed to be an i.i.d. sample from P) is randomly
split into S and 7', and fs is based only on S.
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> Suppose {(xi,y:)i=1 (assumed to be an i.i.d. sample from P) is randomly
split into S and 7', and fs is based only on S.

> fs and T are independent, and the test error rate of fs is an unbiased
estimate of the true error rate of fs.

> If |T'| = m, then the test error rate errr(fs) of fs (conditional on S) is a
binomial random variable (scaled by 1/m):

m-errr(fs) | S ~ Bin(m,errp(fs)).

> The expected value of errr(fs) is errp(fs).
(This means that errr(fs) is an unbiased estimator of errp(fs).)
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» Binary classification: ) = {0,1}.
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» Binary classification: ) = {0,1}.
» Probability distribution P over X x {0,1}; let (X,Y) ~ P.

» Think of P as being comprised of two parts.

1. Marginal distribution p of X (a distribution over X’).
2. Conditional distribution of Y given X = x, for each © € X:

nxz) = PY=1|X==a).

> If n(x) is 0 or 1 for all & € X where pu(x) > 0,
then optimal error rate is zero (i.e., miny errp(f) = 0).

» Otherwise it is non-zero.
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» What is the classifier with smallest true error rate?

« _ JO ifn(z) <1/2
fa) = {1 if n(z) > 1/2.

(Do you see why?)
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» What is the classifier with smallest true error rate?

win O ifn(z) < 1/2;
fa) = {1 if n(z) > 1/2.

(Do you see why?)

> f* is called the Bayes (optimal) classifier, and
erep(f*) = minerrp(f) = E[min{n(X), 1 - n(X)}]

which is called the Bayes (optimal) error rate.

Question:
How far from optimal is the classifier produced by the NN learning method?
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We say that a learning algorithm A is consistent if
lim E[errp(fn)] = err(f”),
n—00

where f,, is the classifier learned using A on an i.i.d. sample of size n.

Theorem (e.g., Cover and Hart 1967)
Assume n is continuous. Then:
> 1-NN is consistent if ming errp(f) = 0.

» k-NN is consistent, provided that k := k,, is chosen as an increasing but
sublinear function of n:

. .k
lim k, = oo, lim = = 0.
n— 00 n—oo N
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1. k-NN learning procedure; role of k, distance functions, features.
2. Training and test error rates.

3. Framework of statistical learning theory; estimating the “true” error rate;
Bayes optimality; high-level idea of consistency.
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denote our classifier as f
what does f(z) mean?

denote the dataset as D
. 2 #of (z,y) € D such that f(x) # y
what is errp(f)? D]

what does P(X,Y) mean?
what is errp ()7 Ep[I[f(X) # Y]] = P(f(X) #Y)

vV V. v v vY
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» what is an estimator?

» using definitions from previous slide, what is errp(f) an estimator of?
errp(f)

> what is an unbiased estimator? Elerrp(f)] = errp(f)

» what on earth does that mean? if we repeatedly draw datasets of size n,
D ~, P(X,Y) and calculate errp(f), the average will converge to

errp(f)
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» what is an estimator?

» using definitions from previous slide, what is errp(f) an estimator of?
errp(f)

> what is an unbiased estimator? Elerrp(f)] = errp(f)

» what on earth does that mean? if we repeatedly draw datasets of size n,
D ~, P(X,Y) and calculate errp(f), the average will converge to

errp(f)

» why should we care?

24/25



> let f, mean a classifier trained using n examples
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> let fn mean a classifier trained using n examples
» what is the property lim;, o E[errp(fn)] = err(f*)? consistency
» what is the ideal classifier f* also known as? the Bayes optimal classifier

» how can we define f*?
errp(f*) = mingerrp(f) = ]E[min{n(X), 1-— n(X)}}
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