
Machine Learning (COMS 4771) Week 1

James McInerney
Adapted from slides by Daniel Hsu

Sept 6, 2017

1 / 22

About me

I Adjunct Assistant Professor at Columbia University in the Department of
Computer Science.

I Research Scientist at Spotify in New York.

I I research topics in machine learning: probabilistic modeling, scalable
Bayesian inference, reinforcement learning.

2 / 22

Learning from data

I Machine learning: study of computational mechanisms that “learn” from
data in order to make predictions and decisions.

3 / 22

Example 1: image classification

I Birdwatcher takes pictures of birds, organizes photos by species.

I Goal: automatically recognize bird species in new photos.

Indigo bunting

[source: https://xkcd.com/1425/] 4 / 22

Example 1: image classification

I Birdwatcher takes pictures of birds, organizes photos by species.

I Goal: automatically recognize bird species in new photos.

Indigo bunting

[source: https://xkcd.com/1425/] 4 / 22

Example 1: image classification

I Birdwatcher takes pictures of birds, organizes photos by species.

I Goal: automatically recognize bird species in new photos.

Indigo bunting

[source: https://xkcd.com/1425/] 4 / 22

Example 2: recommender system

I Netflix users watch movies and provide ratings.

I Goal: predict the rating a user will provide on a movie not yet watched.

I (Ultimate goal: keep people using the product.)

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

(Graphic is from Koren, Bell, and Volinsky.)

5 / 22

Example 2: recommender system

I Netflix users watch movies and provide ratings.

I Goal: predict the rating a user will provide on a movie not yet watched.

I (Ultimate goal: keep people using the product.)

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

(Graphic is from Koren, Bell, and Volinsky.)

5 / 22

Example 2: recommender system

I Netflix users watch movies and provide ratings.

I Goal: predict the rating a user will provide on a movie not yet watched.

I (Ultimate goal: keep people using the product.)
COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

(Graphic is from Koren, Bell, and Volinsky.)

5 / 22

Example 3: machine translation

I Linguists provide translations of all English language books into French,
sentence-by-sentence.

I Goal: automatically translate any English sentence into French.

6 / 22

Example 3: machine translation

I Linguists provide translations of all English language books into French,
sentence-by-sentence.

I Goal: automatically translate any English sentence into French.

6 / 22

Example 4: personalized medicine

I Physician attends to patients, prescribes treatments, and observes health
outcomes (e.g., recovery, death).

I Goal: prescribe personalized treatment for patient that delivers best
possible health outcomes.

7 / 22

Example 4: personalized medicine

I Physician attends to patients, prescribes treatments, and observes health
outcomes (e.g., recovery, death).

I Goal: prescribe personalized treatment for patient that delivers best
possible health outcomes.

7 / 22

Basic setting

Data: labeled examples

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ Inputs×Labels

where

I each input xi is a description of an instance (e.g., image, (user,movie),
sentence, patient), and

I each corresponding label yi is an annotation relevant to the task (typically
not easy to automatically obtain).

Goal: “learn” a function

f̂ : Inputs→ Actions

from the data, such that for a new input x (usually without seeing its
corresponding label y), the action f̂(x) is a “good” action.

Typically, for a prediction problem, we have
(i.e., we want the function to predict the labels of new inputs).

8 / 22

Basic setting

Data: labeled examples

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ Inputs×Labels

where

I each input xi is a description of an instance (e.g., image, (user,movie),
sentence, patient), and

I each corresponding label yi is an annotation relevant to the task (typically
not easy to automatically obtain).

Goal: “learn” a function

f̂ : Inputs→ Actions

from the data, such that for a new input x (usually without seeing its
corresponding label y), the action f̂(x) is a “good” action.

Typically, for a prediction problem, we have
(i.e., we want the function to predict the labels of new inputs).

8 / 22

Basic setting

Data: labeled examples

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ Inputs×Labels

where

I each input xi is a description of an instance (e.g., image, (user,movie),
sentence, patient), and

I each corresponding label yi is an annotation relevant to the task (typically
not easy to automatically obtain).

Goal: “learn” a function

f̂ : Inputs→ Actions

from the data, such that for a new input x (usually without seeing its
corresponding label y), the action f̂(x) is a “good” action.

Typically, for a prediction problem, we have
(i.e., we want the function to predict the labels of new inputs).

8 / 22

Basic setting

Data: labeled examples

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ Inputs×Labels

where

I each input xi is a description of an instance (e.g., image, (user,movie),
sentence, patient), and

I each corresponding label yi is an annotation relevant to the task (typically
not easy to automatically obtain).

Goal: “learn” a function

f̂ : Inputs→ Actions

from the data, such that for a new input x (usually without seeing its
corresponding label y), the action f̂(x) is a “good” action.

Typically, for a prediction problem, we have
(i.e., we want the function to predict the labels of new inputs).

8 / 22

Basic setting

Data: labeled examples

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ Inputs×Labels

where

I each input xi is a description of an instance (e.g., image, (user,movie),
sentence, patient), and

I each corresponding label yi is an annotation relevant to the task (typically
not easy to automatically obtain).

Goal: “learn” a function

f̂ : Inputs→ Actions

from the data, such that for a new input x (usually without seeing its
corresponding label y), the action f̂(x) is a “good” action.

Typically, for a prediction problem, we have Actions = Labels
(i.e., we want the function to predict the labels of new inputs).

8 / 22

Basic setting

Data: labeled examples

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ X × Y

where

I each input xi is a description of an instance (e.g., image, (user,movie),
sentence, patient), and

I each corresponding label yi is an annotation relevant to the task (typically
not easy to automatically obtain).

Goal: “learn” a function

f̂ : X → A

from the data, such that for a new input x (usually without seeing its
corresponding label y), the action f̂(x) is a “good” action.

Typically, for a prediction problem, we have A = Y
(i.e., we want the function to predict the labels of new inputs).

8 / 22

Prediction problems

I Goal: “learn” a prediction function (predictor)

f̂ : Inputs→ Labels

that provides the labels of new inputs (i.e., new unlabeled examples).

learned predictorpast labeled examples learning algorithm

predicted label

new (unlabeled) example

Why might this be possible?

9 / 22

Prediction problems

I Goal: “learn” a prediction function (predictor)

f̂ : Inputs→ Labels

that provides the labels of new inputs (i.e., new unlabeled examples).

learned predictorpast labeled examples learning algorithm

predicted label

new (unlabeled) example

Why might this be possible?

9 / 22

Basic issues

1. What information should be recorded in the inputs, and how should they
be represented?

2. What kinds of prediction functions should consider?

3. How should data be used to select a predictor?

4. How can we evaluate whether “learning” was successful?

10 / 22

Basic issues

1. What information should be recorded in the inputs, and how should they
be represented?

2. What kinds of prediction functions should consider?

3. How should data be used to select a predictor?

4. How can we evaluate whether “learning” was successful?

10 / 22

Basic issues

1. What information should be recorded in the inputs, and how should they
be represented?

2. What kinds of prediction functions should consider?

3. How should data be used to select a predictor?

4. How can we evaluate whether “learning” was successful?

10 / 22

Basic issues

1. What information should be recorded in the inputs, and how should they
be represented?

2. What kinds of prediction functions should consider?

3. How should data be used to select a predictor?

4. How can we evaluate whether “learning” was successful?

10 / 22

Basic issues

1. What information should be recorded in the inputs, and how should they
be represented?

2. What kinds of prediction functions should consider?

3. How should data be used to select a predictor?

4. How can we evaluate whether “learning” was successful?

10 / 22

Special case: binary classification

1 0

Y = {0, 1} (e.g., is it an indigo bunting or not)

Why is this hard?

1. Only have labels for {xi}ni=1, which together comprpise a miniscule
fraction of the input space X .

2. Relationship between input x and correct label y ∈ Y may be
complicated, possibly ambiguous/non-deterministic!

3. Can be many functions that perfectly match inputs to labels on
{(xi, yi)}ni=1. Which should we pick?

11 / 22

Special case: binary classification

1 0

Y = {0, 1} (e.g., is it an indigo bunting or not)

Why is this hard?

1. Only have labels for {xi}ni=1, which together comprpise a miniscule
fraction of the input space X .

2. Relationship between input x and correct label y ∈ Y may be
complicated, possibly ambiguous/non-deterministic!

3. Can be many functions that perfectly match inputs to labels on
{(xi, yi)}ni=1. Which should we pick?

11 / 22

Special case: binary classification

1 0

Y = {0, 1} (e.g., is it an indigo bunting or not)

Why is this hard?

1. Only have labels for {xi}ni=1, which together comprpise a miniscule
fraction of the input space X .

2. Relationship between input x and correct label y ∈ Y may be
complicated, possibly ambiguous/non-deterministic!

3. Can be many functions that perfectly match inputs to labels on
{(xi, yi)}ni=1. Which should we pick?

11 / 22

Special case: binary classification

1 0

Y = {0, 1} (e.g., is it an indigo bunting or not)

Why is this hard?

1. Only have labels for {xi}ni=1, which together comprpise a miniscule
fraction of the input space X .

2. Relationship between input x and correct label y ∈ Y may be
complicated, possibly ambiguous/non-deterministic!

3. Can be many functions that perfectly match inputs to labels on
{(xi, yi)}ni=1. Which should we pick?

11 / 22

Machine learning in context

Intelligent systems

I Goal: robust system with “intelligent” / “human-like” behavior

I Often: hard-coded solution too complex, not robust, sub-optimal

I How do we learn from past experiences to perform well in the future?

Algorithmic statistics

I Goal: statistical analysis of large, complex data sets

I Past: ≤100 data points of two variables.
Data collection and statistical analysis done by hand/eye.

I Now: several million data and variables, collected by
high-throughput automatic processes.

I How can we automate statistical analysis for modern applications?

12 / 22

Machine learning in context

Intelligent systems

I Goal: robust system with “intelligent” / “human-like” behavior

I Often: hard-coded solution too complex, not robust, sub-optimal

I How do we learn from past experiences to perform well in the future?

Algorithmic statistics

I Goal: statistical analysis of large, complex data sets

I Past: ≤100 data points of two variables.
Data collection and statistical analysis done by hand/eye.

I Now: several million data and variables, collected by
high-throughput automatic processes.

I How can we automate statistical analysis for modern applications?

12 / 22

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Business application example

(Example adapted from

nlpers.blogspot.com/2016/08/debugging-machine-learning.html)

Extracting the machine learning problem

I Goal: increase revenue

I Sub-goal: improve click-through rate on online ads

I Sub-sub-goal: improve prediction of click-through rate for ads based on
user/website context

Approach:

1. collect data by logging user-ad interactions on website

2. determine representation for the interactions

3. decide on learning algorithm

4. apply and evaluate learning algorithm on data

5. test in live system

13 / 22

nlpers.blogspot.com/2016/08/debugging-machine-learning.html

Topics for this course

Main topics:

1. Non-parametric methods (e.g., nearest neighbors, decision trees)

2. Parametric methods (e.g., generative models, linear & non-linear models)

3. Reductions (e.g., boosting, multi-class ⇒ binary)

4. Regression (e.g., least squares, Lasso)

5. Representation learning (e.g., mixture models, collaborative filtering)

Major themes:

1. Principles of supervised machine learning (for prediction problems)

2. Algorithmic techniques for machine learning (statistical modeling,
optimization, and reductions)

3. Some well-weathered machine learning algorithms and models

14 / 22

Topics for this course

Main topics:

1. Non-parametric methods (e.g., nearest neighbors, decision trees)

2. Parametric methods (e.g., generative models, linear & non-linear models)

3. Reductions (e.g., boosting, multi-class ⇒ binary)

4. Regression (e.g., least squares, Lasso)

5. Representation learning (e.g., mixture models, collaborative filtering)

Major themes:

1. Principles of supervised machine learning (for prediction problems)

2. Algorithmic techniques for machine learning (statistical modeling,
optimization, and reductions)

3. Some well-weathered machine learning algorithms and models

14 / 22

Sample of other topics in machine learning

Advanced issues

I Distributed learning

I Causal inference

I Privacy and fairness

Other models of learning

I Semi-supervised learning

I Online learning

I Reinforcement learning

Application areas

I Natural language processing

I Computer vision

I Computational advertising

Modes of study

I Mathematical analysis

I Cross-domain evaluations

I End-to-end application study

15 / 22

Prerequisites

Mathematical prerequisites

I Linear algebra (e.g., vector spaces, orthogonality)

I Probability (e.g., conditional probability, independence, random variables)

I Multivariate calculus (e.g., limits, Taylor expansion, gradients)

I Basic algorithms and data structures (e.g., correctness and efficiency
analysis, dynamic programming)

Computational prerequisites

I Regular access to and ability to program in Python or MATLAB.

MATLAB is available for download for SEAS students:
http://portal.seas.columbia.edu/matlab/

16 / 22

http://portal.seas.columbia.edu/matlab/

Course requirements

1. Attend lecture (either in-person or via CVN).

Lecture slides posted on course website shortly after each lecture.

2. Complete ∼five homework assignments (theory & programming): 40%.

3. Complete two in-class exams: 30% each.

17 / 22

Resources

http://jamesmc.com/COMS4771.html
(not much to see here yet)

Course staff

I Instructor: James McInerney

I Instructional assistants: Anuj Sharma (as4529), Boqiao Lai (bl2633),
Wanheng Li (wl2573), Wei Dai (wd2281), Akshay Khatri (ajk2237), Ishan
Jain (ikj2102) (see course website)

I Office hours: held in room 7LW1A on 7th floor CEPSR Mon 4-5pm and
Wed 4-5pm from Monday 11th September onwards

I Course e-mail, online forum (Piazza): see course website soon.

18 / 22

http://jamesmc.com/COMS4771.html

Class policies

I No late assignments accepted without valid medical/family emergency, as
authenticated by your academic adviser (and a physician, if applicable).

I No make-up exams.

In case of a valid medical/family emergency (authenticated as above),
your grade composition will be adjusted.

I Add/drop deadlines: your own responsibility.

http://registrar.columbia.edu/content/

post-change-program-adddrop-period

Note: if you’re going to drop, please do it now.

I Disability services: make arrangements for accommodations and other
services within first two weeks of class.

https://health.columbia.edu/disability-services

19 / 22

http://registrar.columbia.edu/content/post-change-program-adddrop-period
http://registrar.columbia.edu/content/post-change-program-adddrop-period
https://health.columbia.edu/disability-services

Academic rules of conduct

I See course website, and also Academic Honesty policy of the Computer
Science Department.

http://www.cs.columbia.edu/education/honesty

I It is your responsibility to understand the distinction between cheating
and allowed cooperation/collaboration.

If ever in doubt, ask the instructor.

I Any violation will result in a penalty to be assessed at the instructor’s
discretion.

This may include receiving a zero grade for the assignment in question
AND a failing grade for the whole course, even for the first infraction.

20 / 22

http://www.cs.columbia.edu/education/honesty

Homework 0

First homework assignment (“Homework 0”) due Sept 10th at
11:59pm.

I Required; submit on Gradescope. Full details (including homework) will
be put on course website later today.

I Partly intended to help you “page-in” mathematical prerequisites.

I If you have difficulty with the assignment, it is likely that much of the
course will be especially difficult.

I If you cannot complete the assignment, you are strongly advised to
drop the course.

21 / 22

Key takeaways

1. Examples of machine learning problems and why they are challenging.

2. Setup of simple prediction and classification problems.

3. Course information.

22 / 22

