COMS 4771 Introduction to Machine Learning

James McInerney

Adapted from slides by Nakul Verma

Announcements

- HW1:
 - Please submit as a group
 - Watch out for zero variance features (Q5)
- HW2 will be released soon

Last time...

- Support Vector Machines
- Maximum Margin formulation
- Constrained Optimization
- Lagrange Duality Theory
- Convex Optimization
- SVM dual and Interpretation
- How get the optimal solution

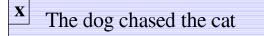
Learning more Sophisticated Outputs

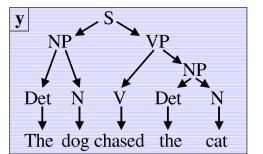
So far we have focused on classification $f: X \rightarrow \{1, ..., k\}$

What about **other outputs**?

- PM_{2.5} (pollutant) particulate matter exposure estimate:
 Input: # cars, temperature, etc.
 Output: 50 ppb
- Pose estimation

• Sentence structure estimate:



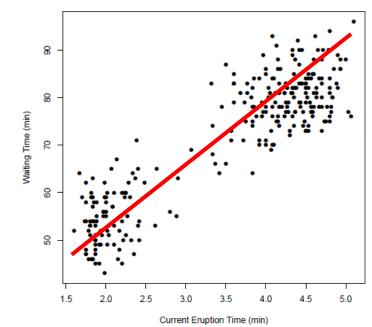


We'll focus on problems with real number outputs (regression problem):

$$f: X \to \mathbf{R}$$

Example:

Next eruption time of old faithful geyser (at Yellowstone)



Regression Formulation for the Example

Given x, want to predict an estimate \hat{y} of y, which minizes the discrepancy (L) between \hat{y} and y.

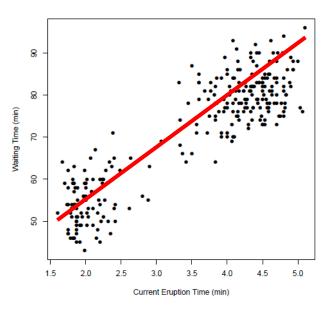
$$\begin{array}{c} \begin{array}{c} L(\hat{y};y) := |\hat{y} - y| & \mbox{Absolute error} \\ := (\hat{y} - y)^2 & \mbox{Squared error} \end{array} \end{array}$$

A linear predictor f, can be defined by the slope w and the intercept w_0 :

$$\hat{f}(\vec{x}) := \vec{w} \cdot \vec{x} + w_0$$

which minimizes the prediction loss.

$$\min_{w,w_0} \mathbb{E}_{\vec{x},y} \left[L(\hat{f}(\vec{x}), y) \right]$$



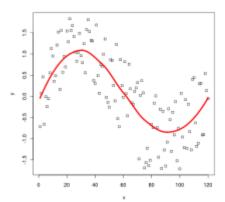
How is this different from classification?

Parametric vs non-parametric Regression

If we assume a particular form of the regressor:

Parametric regression

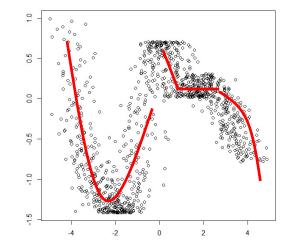
Goal: to learn the parameters which yield the minimum error/loss



If no specific form of regressor is assumed:

Non-parametric regression

Goal: to learn the predictor directly from the input data that yields the minimum error/loss



Want to find a linear predictor f, i.e., w (intercept w_0 absorbed via lifting):

$$\hat{f}(\vec{x}) := \vec{w} \cdot \vec{x}$$

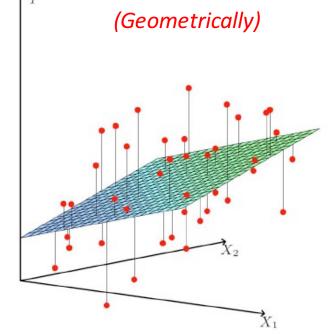
which minimizes the prediction loss over the population.

$$\min_{\vec{w}} \mathbb{E}_{\vec{x},y} \left[L(\hat{f}(\vec{x}), y) \right]$$

We estimate the parameters by minimizing the corresponding loss on the training data:

$$\arg \min_{w} \frac{1}{n} \sum_{i=1}^{n} \left[L(\vec{w} \cdot \vec{x}_{i}, y_{i}) \right]$$
$$= \arg \min_{w} \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \vec{x}_{i} - y_{i} \right)^{2}$$
for square

for squared error



Linear Regression: Learning the Parameters

Linear predictor with squared loss:

$$\arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \vec{x}_{i} - y_{i} \right)^{2}$$
$$= \arg\min_{w} \left\| \begin{pmatrix} \dots \mathbf{x}_{1} \dots \\ \dots \mathbf{x}_{i} \dots \\ \dots \mathbf{x}_{n} \dots \end{pmatrix} \begin{pmatrix} \mathbf{w} \\ \mathbf{w} \end{pmatrix} - \begin{pmatrix} y_{1} \\ y_{i} \\ y_{n} \end{pmatrix} \right\|^{2}$$

$$= \arg\min_{w} \left\| X\vec{w} - \vec{y} \right\|_{2}^{2}$$

Unconstrained problem!

Can take the gradient and examine the stationary points!

Why need not check the second order conditions?

Best fitting w:

$$\frac{\partial}{\partial \vec{w}} \| X \vec{w} - \vec{y} \|^2 = 2X^{\mathsf{T}} (X \vec{w} - \vec{y})$$

$$X^{\mathsf{T}} X \vec{w} = X^{\mathsf{T}} \vec{y} \qquad \text{At a stationary point}$$

$$\implies \vec{w}_{\text{ols}} = (X^{\mathsf{T}} X) \stackrel{\dagger}{\downarrow} X^{\mathsf{T}} \vec{y} \qquad \text{Also c}$$

$$\overset{\dagger}{\downarrow} \text{Pseudo-inverse} \qquad \text{The solution}$$

Also called the Ordinary Least Squares (OLS)

The solution is unique and stable when $X^T X$ is invertible

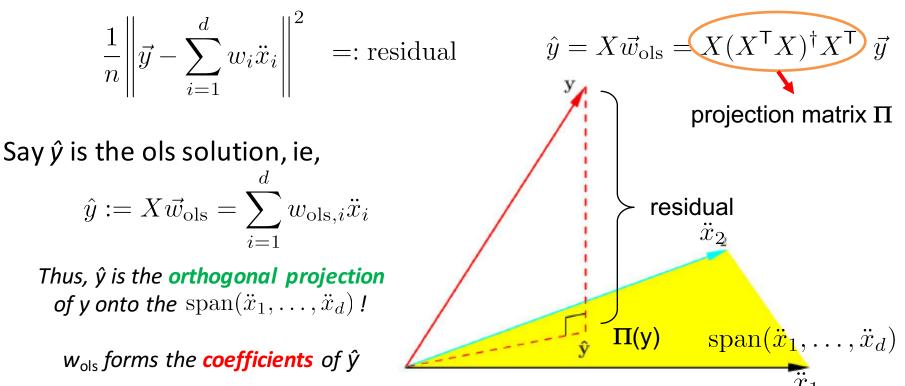
What is the interpretation of this solution?

Linear Regression: Geometric Viewpoint

Consider the *column space* view of data X:

$$\left(\begin{array}{ccc} \dots \mathbf{x}_{1} \dots \\ \dots \mathbf{x}_{i} \dots \\ \dots \mathbf{x}_{n} \dots \end{array}\right) \quad \ddot{x}_{1}, \dots, \ddot{x}_{d} \in \mathbf{R}^{n}$$

Find a *w*, such that the linear combination of *minimizes*



Let's assume that data is **generated** from the following process:

- A example x_i is draw independently from the data space **X** $x_i \sim \mathcal{D}_X$
- y_{clean} is computed as $(w \cdot x_i)$, from a fixed unknown w

 $y_{\text{clean}} := w \cdot x_i$

• y_{clean} is corrupted from by adding independent Gaussian noise $N(0,\sigma^2)$

$$y_i := y_{\text{clean}} + \epsilon_i = w \cdot x_i + \epsilon_i \qquad \epsilon_i \sim N(0, \sigma^2)$$

• (x_i, y_i) is revealed as the *i*th sample

$$(x_1, y_1), \ldots, (x_n, y_n) =: S$$

Linear Regression: Statistical Modeling View

How can we determine *w*, from Gaussian noise corrupted observations? $S = (x_1, y_1), \ldots, (x_n, y_n)$

Observation:

parameter

$$y_i \sim w \cdot x_i + N(0, \sigma^2) = N(w \cdot x_i, \sigma^2)$$

How to estimate parameters of a Gaussian?

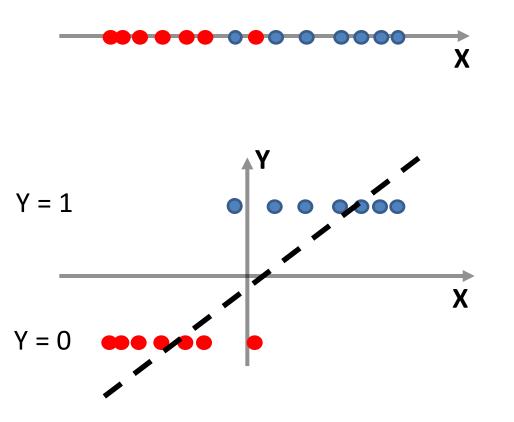
Let's try Maximum Likelihood Estimation!

$$\log \mathcal{L}(w|S) = \sum_{i=1}^{n} \log p(y_i|w, x_i) = \sum_{i=1}^{n} -\frac{(y_i - x_i^{\top}w)^2}{2\sigma^2} + \text{constant}$$
ignoring terms
independent of w

optimizing for w yields the same ols result! What happens if we model each y_i with indep. noise of different variance?

Linear Regression for Classification?

Linear regression seems general, can we use it to derive a binary classifier? Let's study 1-d data:

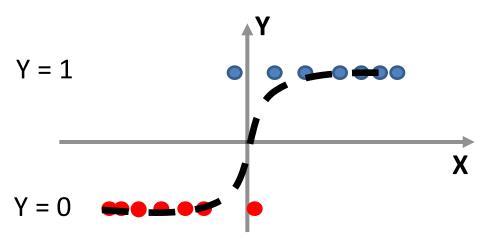


Problem #1: Where is y? for regression.

Problem #2: Not really linear!

Perhaps it is linear in some **transformed** coordinates?

Linear Regression for Classification



Sigmoid a better model!

$$\hat{y} = f(x) := \frac{1}{1 + e^{-w \cdot x}}$$

Binary predictor: sign(2f(x) - 1)

Interpretation:

For an event that occurs with probability P, the odds of that event is:

$$odds(P) := \frac{P}{1-P}$$

Consider the "log" of the odds

$$\log(\text{odds}(P)) := \log(P) := \log\left(\frac{P}{1-P}\right)$$

logit(P) = -logit(1 - P) Symmetric!

For an event with P=0.9, odds = 9 But, for an event P=0.1, odds = 0.11 (very asymmetric)

Logistic Regression

Model the log-odds or logit with linear function!

$$logit(P(x)) = log\left(\frac{P(x)}{1 - P(x)}\right) = w \cdot x$$
$$\frac{P(x)}{1 - P(x)} = e^{w \cdot x}$$

$$P(x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}} = \frac{1}{1 + e^{-w \cdot x}}$$
Sigmoid!
$$Y = 1$$

$$P(x) = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}}$$
Sigmoid!
$$Y = 1$$

$$F(x) = \frac{1}{1 + e^{w \cdot x}}$$
Sigmoid!

Y = 0

OK, we have a we learn the

Logistic Regression: Learning Parameters

Given samples
$$S = (x_1, y_1), ..., (x_n, y_n)$$
 (y_i \in {0,1} binary)

$$\mathcal{L}(w|S) = \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$
Binomial

$$\log \mathcal{L}(w|S) = \sum_{i=1}^{n} y_i \log p(x_i) + (1 - y_i) \log(1 - p(x_i))$$

=
$$\sum_{i=1}^{n} \log(1 - p(x_i)) + \sum_{i=1}^{n} y_i \log \frac{p(x_i)}{1 - p(x_i)} \text{ Now, use logistic model!}$$

=
$$\sum_{i=1}^{n} -\log(1 + e^{w \cdot x_i}) + \sum_{i=1}^{n} y_i w \cdot x_i$$

Can take the derivative and analyze stationary points, unfortunately no closed form solution (use iterative methods like gradient descent to find the solution)

Linear Regression: Other Variations

Back to the ordinary least squares (ols):

minimize
$$\left\| X\vec{w} - \vec{y} \right\|_2^2$$

$$\vec{w}_{\rm ols} = (X^{\mathsf{T}}X)^{\dagger}X^{\mathsf{T}}\vec{y}$$

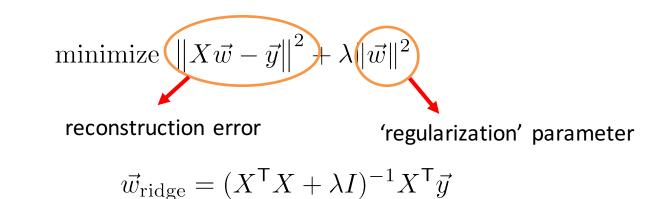
Often poorly behaved when X^TX not invertible

Additionally how can we incorporate prior knowledge?

- perhaps want w to be sparse. Lasso regression
- perhaps want a simple w. Ridge regression

Ridge Regression

Objective



The 'regularization' helps avoid overfitting, and always resulting in a unique solution.

Why?

Equivalent to the following optimization problem:

minimize
$$\|X\vec{w} - \vec{y}\|^2$$

such that $\|\vec{w}\|^2 \le B$

Geometrically:

Lasso Regression

Objective

minimize
$$||X\vec{w} - \vec{y}||^2 + \lambda ||\vec{w}||_1$$

'lasso' penalty

 $w_{
m lasso} =$ (no closed form solution

Lasso regularization encourages sparse solutions.

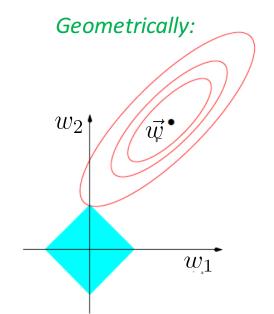
Equivalent to the following optimization problem:

minimize
$$\|X\vec{w} - \vec{y}\|^2$$

such that $\|\vec{w}\|_1 \leq B$

Why?

How can we find the solution?



What About Optimality?

Linear regression (and variants) is great, but what can we say about the best possible estimate?

Can we construct an estimator for real outputs that **parallels** Bayes classifier for discrete outputs?

Optimal L₂ Regressor

Best possible regression estimate at *x*: $f^*(x) := \mathbb{E}[Y|X = x]$

Theorem: for any regression estimate g(x)

$$\mathbb{E}_{(x,y)} |f^*(x) - y|^2 \le \mathbb{E}_{(x,y)} |g(x) - y|^2$$

Similar to Bayes classifier, but for regression.

Proof

Consider L₂ error of
$$g(x)$$

$$\mathbb{E}|g(x) - y|^{2} = \mathbb{E}|g(x) - f^{*}(x) + f^{*}(x) - y|^{2}$$

$$= \mathbb{E}|g(x) - f^{*}(x)|^{2} + \mathbb{E}|f^{*}(x) - y|^{2}$$
Why?

Cross term:
$$2\mathbb{E}\left[(g(x) - f^{*}(x))(f^{*}(x) - y)\right]$$
$$= 2\mathbb{E}_{x}\left[\mathbb{E}_{y|x}\left[(g(x) - f^{*}(x))(f^{*}(x) - y) \mid X = x\right]\right]$$
$$= 2\mathbb{E}_{x}\left[(g(x) - f^{*}(x)) \cdot \mathbb{E}_{y|x}\left[(f^{*}(x) - y) \mid X = x\right]\right]$$
$$= 2\mathbb{E}_{x}\left[(g(x) - f^{*}(x))(f^{*}(x) - f^{*}(x))\right] = 0$$

Therefore $\mathbb{E}|g(x) - y|^2 = \int_x |g(x) - f^*(x)|^2 \mu(dx) + \mathbb{E}|f^*(x) - y|^2$

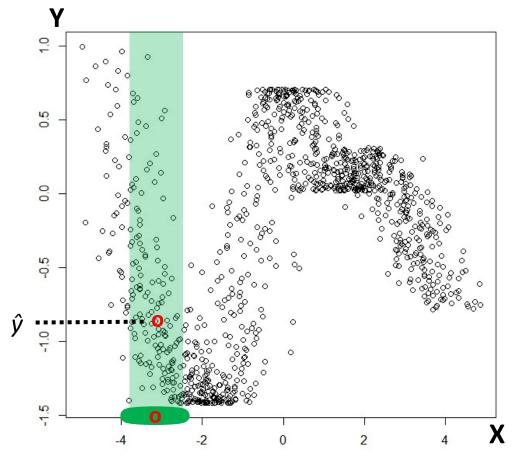
Which is minimized when $g(x) = f^*(x)!$

Linear regression (and variants) is great, but what if we don't know parametric form of the relationship between the independent and dependent variables?

How can we predict value of a new test point *x without* model assumptions?

Idea:

Average estimate **Y** of $\hat{y} = f(x) = observed data in a local$ neighborhood**X**of x!



Kernel Regression

$$\hat{y} = \hat{f}_n(x) := \sum_{i=1}^n w_i(x) y_i$$
Want weights that emphasize local observations

Consider example localization functions:

$$\begin{split} K_h(x, x') &= e^{-\|x - x'\|^2 / h} & \text{Gaussian kernel}^T \\ &= \mathbf{1} \big[\|x - x'\| \le h \big] & \text{Box kernel} \\ &= \big[1 - (1/h) \|x - x'\| \big]_+ & \text{Triangle kernel} \end{split}$$

Then define:

$$w_i(x) := \frac{K_h(x, x_i)}{\sum_{j=1}^n K_h(x, x_j)}$$

Weighted average

$$\hat{\mathbf{y}}_{r}$$

Kernel Regression

$$\hat{y} = \hat{f}_n(x) := \sum_{i=1}^n \frac{K_h(x, x_i)}{\sum_{j=1}^n K_h(x, x_j)} y_i$$

Advantages:

- Does not assume any parametric form of the regression function.
- Kernel regression is consistent

Disadvantages:

- Evaluation time complexity: O(dn)
- Need to keep all the data around!

What We Learned...

- Linear Regression
- Parametric vs Nonparametric regression
- Logistic Regression for classification
- Ridge and Lasso Regression
- Kernel Regression

Questions?