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* Decision boundaries for classification

* Linear decision boundary (linear classification)

 The Perceptron algorithm

 Mistake bound for the perceptron

 Generalizing to non-linear boundaries (via Kernel space)
* Problems become linear in Kernel space

* The Kernel trick to speed up computation



A function f: R? — Ris called convex iff for any two points x, x’and 8 € [0,1]

f(BZ + (1= B)7") < Bf(E) + (1 - B) f(&)




Convexity

A set S — R%is called convexiff for any two pointsx, x’ € S andany 8 € [0,1]
B+ (1-B)7 €S

Examples:
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Convex Optimization

A constrained optimization

minimize  f(Z) (objective)
reR
subjectto: ¢;(¥) <0 forl1<i<n (constraints)

is called convex a convex optimization problem
If:

the objective function f(Z) is convexfunction,and
the feasible set induced by the constraints g; is a convex set

Why do we care?
We can find the optimal solution for convex problems efficiently!



Convex Optimization: Niceties

* Every local optimais a global optima in a convex optimization
problem.

Example convex problems:
Linear programs, quadratic programs,
Conic programs, semi-definite program.

Several solvers exist to find the optima:
CVX, SeDuMi, C-SALSA, ...

* We can use a simple ‘descend-type’ algorithm for finding the
minimal



Constrained Optimization

Constrained optimization (standard form):

minimize  f(Z) (objective)
reR
subjectto: ¢;(¥) <0 forl1<i<n (constraints)
What to do?

We’ll assume that the

* Projection methods problem is feasible

start with a feasible solution x,,
find x; that has slightly lower objective value,
if x; violates the constraints, project back to the constraints.
iterate.
* Penalty methods

use a penalty function to incorporate the constraints into the objective



The Lagrange (Penalty) Method

Optimization problem:

Consider the augmented function:

Minimize: f(Z

f(Z) + ; 0
’ ZQQ gyt 91 <

(Lagrange variables,
(Lagrange function) or dual variables)

v

Observation:
For any feasible x and all A,> 0, we have (!17 ) < £(2)

So, the optimal value to the constrained optimization:

p* = min max L(Z, )\) The problem becomes
T Ai20 unconstrained in x!



The Dual Problem

Optimization problem:

Optimalvalue: p* = minmax L(Z, X)
Z A;>0
(also called the primal) Minimize: f( )
0
. SU(%’\r;[IfP;;:lt g( ) o

Now, considerthe function: min L(Z, \)

Lagrange function:

Observation:

L(Z,X) := f(Z) + Z Xig; ()

Since, for any feasible x and all A, > 0:
p* > min L(Z, X)

Thus:

4 =)
d* = = max min L(7', A) < p*

(also called the dual)
\§ J




(Weak) Duality Theorem

Theorem (weak Lagrangian duality):

(also called the minimax inequality)

p* —d*  (called the duality gap)

Under what conditions can we
achieve equality?

Optimization problem:

Minimize: f(%)

- g;(2) <0
gt 9il7) =

Lagrange function:
L(Z,X) = f(Z) + > Xigi(Z)
1=1

Primal:

* = mj L(Z, X
p" = minmax L(z, )



Perceptron and Linear Separablity

Say thereis a linear decision boundary which can perfectly separate the
trainingdata

Which linear separator will the Perceptron algorithm return?

The separator with a
large margin vy is better
for generalization

How can we incorporate the margin in finding the linear boundary?



Solution: Support Vector Machines (SVMs)

Motivation:

* ltreturnsalinear classifier that is stable solution by giving a maximum
margin solution

* Slight modification to the problem provides a wayto deal with non-
separable cases

* Itis kernelizable, so gives an implicit way of yielding non-linear
classification.



SVM Formulation

Say the trainingdata Sis linearly

separable by some margin (but the 4 °
linear separatordoes not necessarily °
passes through the origin). ... e

o o o Py

o
Then: o
decision boundary: ¢(¥) =w-Z—-b=0 ° o’
o ®°,°
Linear classifier:  f(%) = sign(g(7)) °
= Sign(w' - T — b)

Idea: we can try finding two parallel hyperplanes that correctly
classify all the points, and maximize the distance between them!



SVM Formulation (contd. 1)

Decision boundaryforthe two hyperpanes:

W7 —b=+1

Distance between the two hyperplanes:

2
S why?
|17 »
‘/‘
. . . . . . / //,
Trainingdatais correctly classifiedif: 2 \ ,~
kil

wfz—b2+1 ifyi:+1
wf—bg—l [fyi:-l

Together: y;(W-Z; —b) > +1 foralli



SVM Formulation (contd. 2)

2 "

Distance between the hyperplanes: T %
w P Q
A “S)

Trainingdatais correctly classified if:

yi(W-Z; —b) > +1  (foralli)

Therefore, want:

2

Maximize the distance: 17
w

Such that: y;(W-2; —b) > +1
(for all i)

Let’s put it in the standard form...



SVM Formulation (finally!)

Maximize:

Such that: y;(w-&; —b) > +1
(for all i)

SVM standard (primal) form:

L L, 2
Minimize: §||w||

Such that: vi(W-4; —b) > +1
(for all i)

What can we do if the problem is not-linearly separable?



SVM Formulation (non-separable case)

Idea: introduce a slack for the mis-
classified points, and minimize the
slack!

SVM standard (primal) form (with slack):

o | R
Minimize: §||w|| + C’Zfi

Suchthat: (W -2, —b) >1—¢&
(for all i)




SVM: Question

SVM standard (primal) form (with slack):

UV S -
Minimize: §||w|| + C;&

Such that: y;(W-&; —b) > 1—¢;
(for all i)

Questions:
1. How do we find the optimal w, b and &?
2. Whyis it called “Support Vector Machine”?



How to Find the Solution?

SVM standard (primal) form:

Cannotsimply take the derivative

(wrtw, b and &) and examinethe Minimize: %Hwn? + CZ@-

stationary points... i=1

Such that: yi(w-2;, —b) >1-¢;
(foralli) & =0

Why?

Gradient not zero at
the function minima
(respecting the
constraints)!

Minimize: x2
C x>
Such that: x>5 (infeasible
region)

////

x=5 X

Need a way to do optimization with constraints



Back to Constrained Opt.: Duality Theorems

Optimization problem:

Theorem (weak Lagrangian duality):
d* <p* Minimize: f(%)

- g;(2) <0
gt 9il7) =

Lagrange function:
Theorem (strong Lagrangian duality): . n
If fis convexand for a feasible point x* L(fE’ >‘) = f(Z) + Zl Aigi ()

gi(Z7) <0, or

0w e Primal:
g:(#*) <0 when g is affine p* = min max L(Z, X)
Z A >0
Then d*=p* Dual:
d* := maxmin L(Z, \)
Xi>0 Z



Ok, Back to SVMs

Observations: SVM standard (primal) form:

* object function is convex L L. o
Minimize: =[]
* the constraintsare affine,inducing a (w,b) 2
olytope constraintset. LS
POIYIOP Such that: y; (W - Z; — b) > 1
(for all i)

So, SVM is a convex optimization problem
(in fact a quadratic program)

Moreover, strong duality holds.

Let’s examinethe dual... the Lagrangianiis:

L(w, ——||w||2+2az — yi(@ - 7 — b))



SVM Dual

Lagrangian: SVM standard (primal) form:
I LS
L(@,b, @) = Slll* + 3 _as(l—y(@-Z=b)|| g
P Minimize: 2||w||

(w,b)

Primal: p* = min max L(, b, &) Lo

B,b ;>0 Such that: y; (W - Z; — b) > 1

(for all i)

Dual:  d* = max/min L(, b, &)

a; >0Nad,b

Unconstrained, let’s calculate
mn
a - - — — — —
L(@,b,d) =W — ) oyl — = oy
0w i=1 i—1

 when ;> 0, the corresponding x; is the support vector
* wisonly a function of the support vectors!

%L W, b, @) :;aiyi :;aiyizo



SVM Dual (contd.)

Lagrangian:
L(, b, @) —Hw||2 —I—E:ozZ — y; (W T —
Primal: p* = mi L(G.b. &
p" = min max (@, b, &)
Dual: d* = max/min L(w,b, @)

(6 77 ZO ’lﬁ,b

Unconstrained, let’s calculate
mn

' L(’U?,b,&) = E a; —
0,b —
1=

- 1
4= mag ) oi =5 ) ity (v )
Ti=l g Ty

subject to Z a;y; =0
i=1

@]

So:

SVM standard (primal) form:

L |
Minimize: §||w||

(w,b)

Such that: y; (W - Z; — b) > 1
(for all i)

1
5 > aiagyiy; (e - ;)



SVM Optimization Interpretation

SVM standard (primal) form:

Minimize: %||7ﬁ||2

Maximize y = 2/||w||

(w,b)
Such that: y; (W - Z; — b) > 1
(for all i)
SVM standard (dual) form:
Maximize: zn: Qv — L Z iy (i - ) Kernelized version
(cy;) - 2 —
1 1=1 1,7
L Only a function of
Such that: _ .
(for all i ; a;y; =0 a; =0 “support vectors”




What We Learned...

e Support Vector Machines

e  Maximum Margin formulation
 Constrained Optimization

* Lagrange Duality Theory

* Convex Optimization

e SVM dual and Interpretation

e How get the optimal solution



Questions?




