Support Vector Machines

James McInerney

Adapted from slides by Nakul Verma

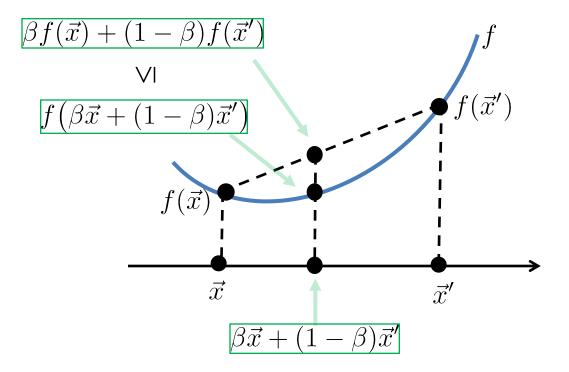
Last time...

- Decision boundaries for classification
- Linear decision boundary (linear classification)
- The Perceptron algorithm
- Mistake bound for the perceptron
- Generalizing to non-linear boundaries (via Kernel space)
- Problems become linear in Kernel space
- The Kernel trick to speed up computation

Convexity

A function $f: \mathbb{R}^d \to \mathbb{R}$ is called convex iff for any two points x, x' and $\beta \in [0,1]$

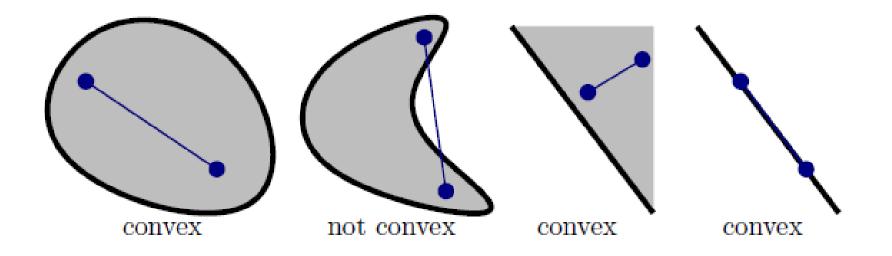
$$f\left(\beta \vec{x} + (1-\beta)\vec{x}'\right) \le \beta f(\vec{x}) + (1-\beta)f(\vec{x}')$$



Convexity

A set $S \subset \mathbb{R}^d$ is called convex iff for any two points $x, x' \in S$ and any $\beta \in [0,1]$ $\beta \vec{x} + (1 - \beta) \vec{x}' \in S$

Examples:



Convex Optimization

A constrained optimization

minimize
 $\vec{x} \in \mathbf{R}^d$ $f(\vec{x})$ (objective)subject to: $g_i(\vec{x}) \le 0$ for $1 \le i \le n$ (constraints)

is called convex a convex optimization problem If:

the objective function $f(\vec{x})$ is convex function, and the feasible set induced by the constraints g_i is a convex set

Why do we care?

We can find the optimal solution for convex problems *efficiently*!

Convex Optimization: Niceties

- Every local optima is a **global optima** in a convex optimization problem.
 - Example convex problems:
 - Linear programs, quadratic programs,
 - Conic programs, semi-definite program.

Several **solvers exist** to find the optima: CVX, SeDuMi, C-SALSA, ...

We can use a simple 'descend-type' algorithm for finding the minima!

Constrained Optimization

Constrained optimization (standard form):

minimize
 $\vec{x} \in \mathbf{R}^d$ $f(\vec{x})$ (objective)subject to: $g_i(\vec{x}) \le 0$ for $1 \le i \le n$ (constraints)

What to do?

Projection methods

start with a feasible solution x_0 ,

find x_1 that has slightly lower objective value,

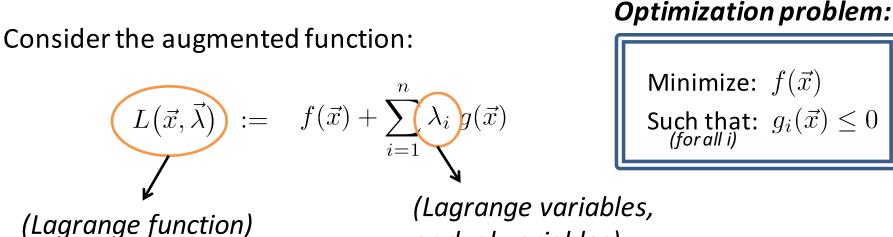
if x_1 violates the constraints, **project back** to the constraints. iterate.

• Penalty methods

use a **penalty function** to incorporate the constraints into the objective

We'll assume that the problem is feasible

The Lagrange (Penalty) Method



or dual variables)

Observation:

For *any* feasible *x* and *all*
$$\lambda_i \ge 0$$
, we have $L(\vec{x}, \vec{\lambda}) \le f(\vec{x})$
 $\implies \max_{\lambda_i \ge 0} L(\vec{x}, \vec{\lambda}) \le f(\vec{x})$

So, the optimal value to the constrained optimization:

$$p^* := \min_{\vec{x}} \max_{\lambda_i \ge 0} L(\vec{x}, \vec{\lambda})$$

The problem becomes unconstrained in x!

The Dual Problem

Optimal value: $p^* = \min_{\vec{x}} \max_{\lambda_i \ge 0} L(\vec{x}, \vec{\lambda})$ (also called the primal)

Now, consider the function: $\min_{\vec{x}} L(\vec{x}, \vec{\lambda})$

Observation:

Since, for **any** feasible x and **all** $\lambda_i \ge 0$:

 $p^* \ge \min_{\vec{x}} L(\vec{x}, \vec{\lambda})$

Thus:

$$d^* := \max_{\lambda_i \ge 0} \min_{\vec{x}'} L(\vec{x}', \vec{\lambda}) \le p^*$$
 (also called the dual)

Optimization problem: Minimize: $f(\vec{x})$ Such that: $g_i(\vec{x}) \leq 0$

Lagrange function:

$$L(\vec{x}, \vec{\lambda}) := f(\vec{x}) + \sum_{i=1}^{n} \lambda_i g_i(\vec{x})$$

(Weak) Duality Theorem

Theorem (weak Lagrangian duality):

 $d^* \le p^*$

(also called the minimax inequality)

 $p^{*}-d^{*}$ (called the duality gap)

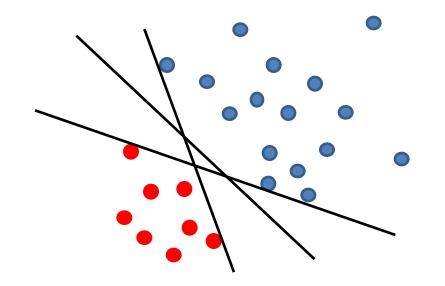
Under what conditions can we achieve equality?

Optimization problem: Minimize: $f(\vec{x})$ Such that: $g_i(\vec{x}) \leq 0$ Lagrange function: $L(\vec{x}, \vec{\lambda}) := f(\vec{x}) + \sum_{i=1}^{n} \lambda_i g_i(\vec{x})$ i=1**Primal**: $p^* = \min_{\vec{x}} \max_{\lambda_i \ge 0} L(\vec{x}, \vec{\lambda})$ Dual: $d^* := \max_{\lambda_i \ge 0} \min_{\vec{x}} L(\vec{x}, \vec{\lambda})$

Perceptron and Linear Separablity

Say there is a **linear** decision boundary which can **perfectly separate** the training data

Which linear separator will the Perceptron algorithm return?



The separator with a **large margin** γ is better for generalization

How can we incorporate the margin in finding the linear boundary?

Motivation:

- It returns a linear classifier that is **stable** solution by giving a maximum margin solution
- Slight modification to the problem provides a way to deal with **non-separable** cases
- It is **kernelizable**, so gives an implicit way of yielding non-linear classification.

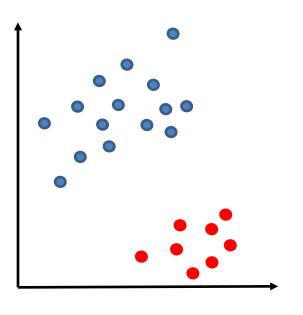
SVM Formulation

Say the training data *S* is linearly separable by some margin (but the linear separator does not necessarily passes through the origin).

Then:

decision boundary: $g(\vec{x}) = \vec{w} \cdot \vec{x} - b = 0$

Linear classifier: $f(\vec{x}) = \operatorname{sign}(g(\vec{x}))$ $= \operatorname{sign}(\vec{w} \cdot \vec{x} - b)$



Idea: we can try finding **two** parallel hyperplanes that correctly classify all the points, and **maximize** the distance between them!

SVM Formulation (contd. 1)

Decision boundary for the two hyperpanes:

$$\vec{w} \cdot \vec{x} - b = +1$$

$$\vec{w} \cdot \vec{x} - b = -1$$

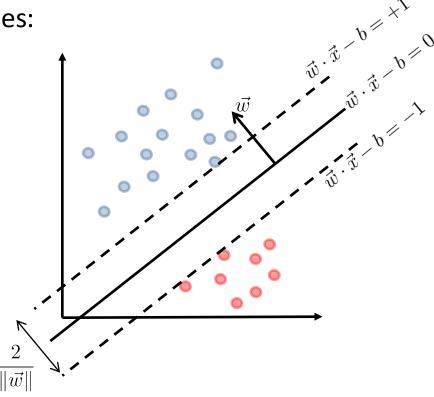
Distance between the two hyperplanes:

 $rac{2}{\|ec{w}\|}$ why?

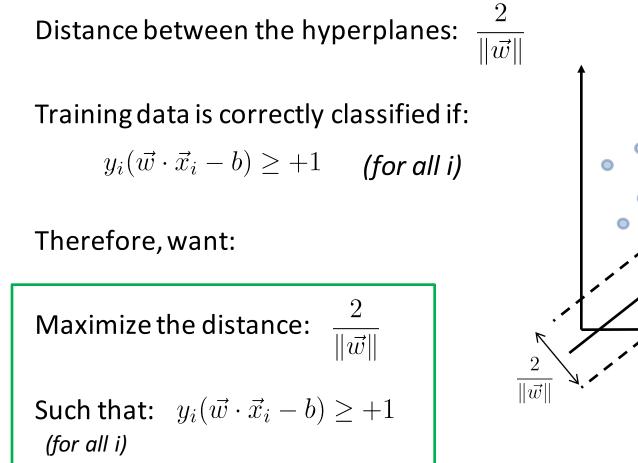
Training data is correctly classified if:

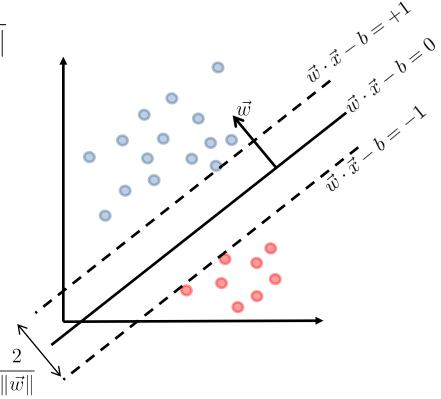
$$\vec{w} \cdot \vec{x}_i - b \ge +1 \qquad if \ \mathbf{y}_i = +\mathbf{1} \\ \vec{w} \cdot \vec{x}_i - b \le -1 \qquad if \ \mathbf{y}_i = -\mathbf{1}$$

Together: $y_i(\vec{w} \cdot \vec{x}_i - b) \ge +1$ for all *i*



SVM Formulation (contd. 2)





Let's put it in the standard form ...

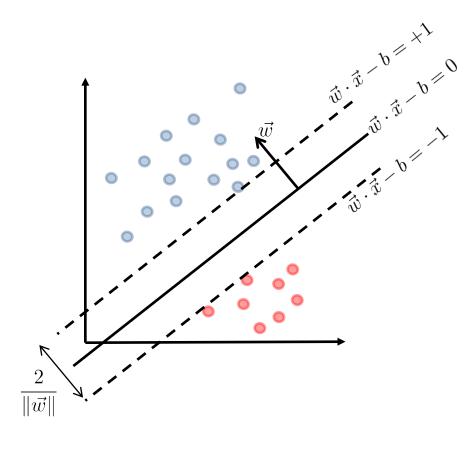
SVM Formulation (finally!)

Maximize:
$$\frac{2}{\|\vec{w}\|}$$

Such that: $y_i(\vec{w}\cdot\vec{x}_i-b)\geq +1$
(for all i)

SVM standard (primal) form:

Minimize: $\frac{1}{2} \|\vec{w}\|^2$ Such that: $y_i(\vec{w} \cdot \vec{x}_i - b) \ge +1$ (for all i)



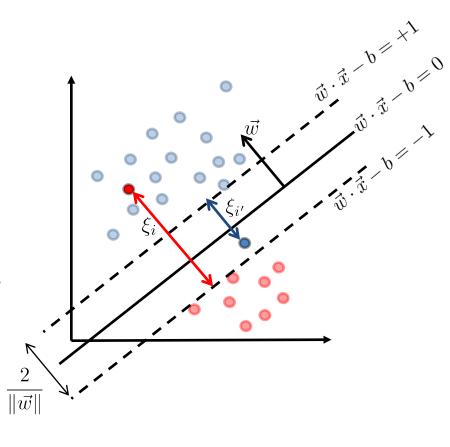
What can we do if the problem is not-linearly separable?

SVM Formulation (non-separable case)

Idea: introduce a **slack** for the misclassified points, and **minimize** the slack!

SVM standard (primal) form (with slack):

$$\begin{array}{ll} \text{Minimize:} & \frac{1}{2} \|\vec{w}\|^2 & + C \sum_{i=1}^n \xi_i \\ \text{Such that:} & y_i (\vec{w} \cdot \vec{x}_i - b) \geq 1 - \xi_i \\ \text{(for all i)} & \\ \xi_i \geq 0 \end{array}$$



SVM: Question

SVM standard (primal) form (with slack):

$$\begin{array}{ll} \text{Minimize:} & \frac{1}{2} \| \vec{w} \|^2 &+ C \sum_{i=1}^n \xi_i \\ \text{Such that:} & y_i (\vec{w} \cdot \vec{x}_i - b) \geq 1 - \xi_i \\ \text{(for all i)} & \xi_i \geq 0 \end{array}$$

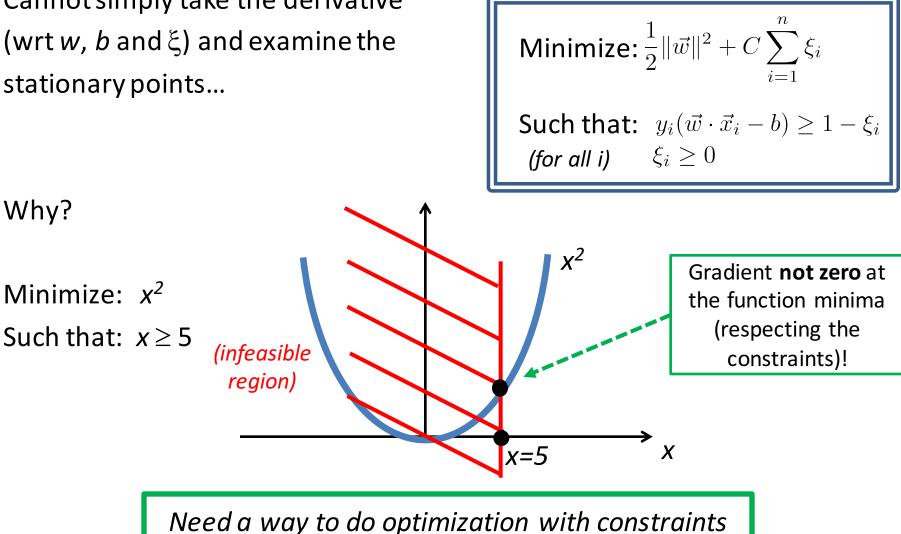
Questions:

- 1. How do we find the optimal w, b and ξ ?
- 2. Why is it called "Support Vector Machine"?

How to Find the Solution?

Cannot simply take the derivative (wrt w, b and ξ) and examine the stationary points...

SVM standard (primal) form:



Back to Constrained Opt.: Duality Theorems

Theorem (weak Lagrangian duality):

 $d^* \le p^*$

Theorem (strong Lagrangian duality):

If f is convex and for a feasible point x^* $g_i(\vec{x}^*) < 0$, or $g_i(\vec{x}^*) \le 0$ when g is affine

Then $d^* = p^*$

Optimization problem: $\begin{array}{ll} \text{Minimize:} & f(\vec{x}) \\ \text{Such that:} & g_i(\vec{x}) \leq 0 \\ & \textit{(for all i)} \end{array} \end{array}$ Lagrange function: $L(\vec{x}, \vec{\lambda}) := f(\vec{x}) + \sum_{i=1}^{n} \lambda_i g_i(\vec{x})$ **Primal**: $p^* = \min_{\vec{x}} \max_{\lambda_i > 0} L(\vec{x}, \vec{\lambda})$ Dual: $d^* := \max_{\lambda_i \ge 0} \min_{\vec{x}} L(\vec{x}, \vec{\lambda})$

Ok, Back to SVMs

Observations:

- object function is convex
- the constraints are affine, inducing a polytope constraint set.

So, SVM is a convex optimization problem (in fact a **quadratic program**)

Moreover, strong duality holds.

Let's examine the dual... the Lagrangian is:

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} \|\vec{w}\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i (\vec{w} \cdot \vec{x}_i - b))$$

SVM standard (primal) form:

$$\begin{array}{ll} \text{Minimize:} & \displaystyle \frac{1}{2}\|\vec{w}\|^2 \\ \textit{(w,b)} \end{array} \\ \text{Such that:} & \displaystyle y_i(\vec{w}\cdot\vec{x_i}-b) \geq 1 \\ \textit{(for all i)} \end{array} \end{array}$$

SVM Dual

Lagrangian:

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} \|\vec{w}\|^{2} + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i}(\vec{w} \cdot \vec{x}_{i} - b)\right)$$

$$\text{Primal:} \quad p^{*} = \min_{\vec{w}, b} \max_{\alpha_{i} \geq 0} L(\vec{w}, b, \vec{\alpha})$$

$$\text{Dual:} \quad d^{*} = \max_{\alpha_{i} \geq 0} \min_{\vec{w}, b} L(\vec{w}, b, \vec{\alpha})$$

$$\text{Unconstrained, let's calculate}$$

$$\frac{\partial}{\partial \vec{w}} L(\vec{w}, b, \vec{\alpha}) = \vec{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x}_{i}$$

$$\Rightarrow \vec{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x}_{i}$$

$$\text{when } \alpha_{l} > 0, \text{ the corresponding } x_{i} \text{ is the support vector}$$

$$\text{w is only a function of the support vectors!}$$

$$\frac{\partial}{\partial b}L(\vec{w}, b, \vec{\alpha}) = \sum_{i=1}^{n} \alpha_i y_i$$

$$\implies \sum_{i=1}^{n} \alpha_i y_i = 0$$

SVM Dual (contd.)

Lagrangian:

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} \|\vec{w}\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i(\vec{w} \cdot \vec{x}_i - b))$$
Minimize: $\frac{1}{2} \|\vec{w}\|^2$
Primal: $p^* = \min_{\vec{w}, b} \max_{\alpha_i \ge 0} L(\vec{w}, b, \vec{\alpha})$
Such that: $y_i(\vec{w} \cdot \vec{x}_i - b) \ge 1$
(for all i)
Unconstrained, let's calculate
$$\min_{\vec{w}, b} L(\vec{w}, b, \vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$$
So:
 $d^* = \max_{\alpha_i \ge 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$
subject to $\sum_{i=1}^n \alpha_i y_i = 0$

SVM Optimization Interpretation

SVM standard (primal) form:

 $\begin{array}{ll} \text{Minimize:} & \displaystyle\frac{1}{2}\|\vec{w}\|^2\\ \textit{(w,b)} & \\ \text{Such that:} & y_i(\vec{w}\cdot\vec{x}_i-b)\geq 1\\ \textit{(for all i)} & \end{array}$

Maximize $\gamma = 2/||w||$

SVM standard (dual) form:

$$\begin{array}{ll} \text{Maximize:} & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \left(x_i \cdot x_j \right) \\ \text{Such that:} & \sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \alpha_i \geq 0 \\ \text{(for all i)} & \sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \alpha_i \geq 0 \end{array}$$

Kernelized version

Only a function of "support vectors"

What We Learned...

- Support Vector Machines
- Maximum Margin formulation
- Constrained Optimization
- Lagrange Duality Theory
- Convex Optimization
- SVM dual and Interpretation
- How get the optimal solution

Questions?