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Last	time…

• Decision	boundaries	for	classification

• Linear	decision	boundary	(linear	classification)

• The	Perceptron	algorithm

• Mistake	bound	for	the	perceptron	

• Generalizing	to	non-linear	boundaries	(via	Kernel	space)

• Problems	become	linear	in	Kernel	space

• The	Kernel	trick	to	speed	up	computation



Convexity

A	function	f:	Rd ® R is	called	convex	iff for	any	two	points	x,	x’ and	b Î [0,1]

£



Convexity

A	set	S	Ì Rd is	called	convex	iff for	any	two	points	x,	x’Î S	and	any	b Î [0,1]

Examples:



Convex	Optimization

A	constrained	optimization

minimize

subject	to:																									for	1	£ i £ n

is	called	convex	a	convex	optimization	problem
If:		
the	objective	function											is	convex	function,	and
the	feasible	set	induced	by	the	constraints	gi is	a	convex	set

(objective)

(constraints)

Why	do	we	care?	
We	can	find	the	optimal	solution	for	convex	problems	efficiently!



Convex	Optimization:	Niceties	

• Every	local	optima	is	a	global	optima	in	a	convex	optimization	
problem.	

Example	convex	problems:
Linear	programs,	quadratic	programs,
Conic	programs,	semi-definite	program.

Several	solvers	exist	to	find	the	optima:
CVX,	SeDuMi,	C-SALSA,	…

• We	can	use	a	simple ‘descend-type’	algorithm	for	finding	the	
minima!



Constrained	Optimization	

Constrained	optimization	(standard	form):

minimize

subject	to:																									for	1	£ i £ n

What	to	do?	
• Projection	methods

start	with	a	feasible	solution	x0,	
find	x1 that	has	slightly	 lower	objective	value,	
if	x1 violates	the	constraints,	project	back to	the	constraints.
iterate.

• Penalty	methods	
use	a	penalty	function	to	incorporate	the	constraints	into	the	objective

(objective)

(constraints)

We’ll	assume	that	the	
problem	is	feasible



The	Lagrange	(Penalty)	Method

Consider	the	augmented	function:

Observation:
For	any	feasible	x and	all li ³ 0,	we	have	

So,	the	optimal	value	to	the	constrained	optimization:

(Lagrange	function) (Lagrange	variables,	
or	dual	variables)

The	problem	becomes	
unconstrained	 in	x!

Optimization	problem:

Minimize:
Such	that:

(for	all	i)



The	Dual	Problem

Optimal	value:

Now,	consider	the	function:

Observation:
Since,	for	any	feasible	x and	all li ³ 0:

Thus:

Optimization	problem:

Minimize:
Such	that:

(for	all	i)

Lagrange	function:	

(also	called	the	primal)

(also	called	the	dual)



(Weak)	Duality	Theorem

Theorem	(weak	Lagrangian duality):
Optimization	problem:

Minimize:
Such	that:

(for	all	i)

Lagrange	function:	

Primal:	

Dual:	Under	what	conditions	can	we	
achieve	equality?

(called	the	duality	gap)

(also	called	the	minimax inequality)



Perceptron	and	Linear	Separablity

Say	there	is	a	linear decision	boundary	which	can	perfectly	separate	the	
training	data

Which	linear	separator	will	the	Perceptron	algorithm	return?

The	separator	with	a	
large	margin g is	better	
for	generalization

How	can	we	incorporate	the	margin	in	finding	the	linear	boundary?	



Solution:	Support	Vector	Machines	(SVMs)

Motivation:

• It	returns	a	linear	classifier	that	is	stable solution	by	giving	a	maximum	
margin	solution

• Slight	modification	to	the	problem	provides	a	way	to	deal	with	non-
separable cases

• It	is	kernelizable,	so	gives	an	implicit	way	of	yielding	non-linear	
classification.



SVM	Formulation

Say	the	training	data	S is	linearly	
separable	by	some	margin	(but	the	
linear	separator	does	not	necessarily	
passes	through	the	origin).	

Then:
decision	boundary:

Linear	classifier:

Idea:	we	can	try	finding	two parallel	hyperplanes that	correctly	
classify	all	the	points,	and	maximize	the	distance	between	them!



SVM	Formulation	(contd.	1)

Decision	boundary	for	the	two	hyperpanes:

Distance	between	the	two	hyperplanes:

Training	data	is	correctly	classified	if:

Together:																																									for	all	i

if	yi =	+1
if	yi =	-1

why?



SVM	Formulation	(contd.	2)

Distance	between	the	hyperplanes:

Training	data	is	correctly	classified	if:

Therefore,	want:

Maximize	the	distance:

Such	that:

(for	all	i)

(for	all	i)

Let’s	put	it	in	the	standard	form…



SVM	Formulation	(finally!)

Maximize:

Such	that:
(for	all	i)

Minimize:

Such	that:
(for	all	i)

SVM	standard	(primal)	form:

What	can	we	do	if	the	problem	is	not-linearly	separable?



SVM	Formulation	(non-separable	case)

Idea:	introduce	a	slack for	the	mis-
classified	points,	and	minimize the	
slack!

Minimize:

Such	that:
(for	all	i)

SVM	standard	(primal)	form	(with	slack):



SVM:	Question

SVM	standard	(primal)	form	(with	slack):

Minimize:

Such	that:
(for	all	i)

Questions:
1. How	do	we	find	the	optimal	w,	b	and	x?
2. Why	is	it	called	“Support	Vector	Machine”?



How	to	Find	the	Solution?

Cannot	simply	take	the	derivative
(wrtw,	b and	x)	and	examine	the	
stationary	points…

Why?

Minimize:			x2

Such	that:		x ³ 5

x2

xx=5

Gradient	not zero at	
the	function	minima	

(respecting	 the	
constraints)!(infeasible	

region)

Need	a	way	to	do	optimization	with	constraints

Minimize:

Such	that:
(for	all	i)

SVM	standard	(primal)	form:



Back	to	Constrained	Opt.:	Duality	Theorems

Theorem	(weak	Lagrangian duality):

Theorem	(strong	Lagrangian duality):
If	f is	convex	and	for	a	feasible	point	x*

,	or
when	g is	affine

Then	

Optimization	problem:

Minimize:
Such	that:

(for	all	i)

Lagrange	function:	

Primal:	

Dual:	



Ok,	Back	to	SVMs

Observations:
• object	function	is	convex
• the	constraints	are	affine,	inducing	a	

polytope	constraint	set.

So,	SVM	is	a	convex	optimization	problem
(in	fact	a	quadratic	program)

Moreover,	strong	duality holds.

Let’s	examine	the	dual…	the	Lagrangian is:

Minimize:

Such	that:
(for	all	i)

SVM	standard	(primal)	form:

(w,b)



SVM	Dual

Minimize:

Such	that:
(for	all	i)

SVM	standard	(primal)	form:

(w,b)

Lagrangian:

Primal:

Dual:

Unconstrained,	 let’s	calculate

• when	aI	>	0,	the	corresponding	xi is	the	support	vector
• w	is	only	a	function	 of	the	support	vectors!	



SVM	Dual	(contd.)

Minimize:

Such	that:
(for	all	i)

SVM	standard	(primal)	form:

(w,b)

Lagrangian:

Primal:

Dual:

So:

Unconstrained,	 let’s	calculate

subject	to



SVM	Optimization	Interpretation

Minimize:

Such	that:
(for	all	i)

SVM	standard	(primal)	form:

(w,b)

Maximize:

Such	that:
(for	all	i)

SVM	standard	(dual)	form:

(ai)

Maximize	g =	2/||w||

Kernelized version

Only	a	function	of		
“support	vectors”



What	We	Learned…

• Support	Vector	Machines

• Maximum	Margin	formulation

• Constrained	Optimization	

• Lagrange	Duality	Theory

• Convex	Optimization	

• SVM	dual	and	Interpretation

• How	get	the	optimal	solution



Questions?


